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Learning objective

To provide students with primary knowledge on the following topics:

nuclear structure

radioactivity

interaction of radiation with matter

nuclear reactions

nuclear fission as used for power production

basic quantities and methods used to describe the behaviour of neutrons in a nuclear reactor.
static and time-dependent diffusion equation

elements of CANDU-reactor design

basic codes used for nuclear reactor neutronic design

Learning outcomes

After taking the course, students should be able to:

Understand the structure of the atom and the main components of the nucleus.

Find isotopes on the Table of Nuclei, and identify the nature of radioactive decay (if any) of a given
isotope.

Describe the main differences between alpha, beta and gamma decay

Understand the concept of binding energy and how nuclei of different binding energies may undergo
fission or fusion.

Compute the energy released in fission or fusion reactions.

Describe the way different types of radiation interact with matter.

Understand the concept of chain reaction and each component of the four(six)-factor formula.
Formulate the neutron diffusion equation.

Describe and use methods of solution for the static diffusion equation.

Describe and use methods of solution for the time-dependent diffusion equation

Describe fission-product poisoning (Xe, Sm)

Describe reactivity effects of temperature and void

Describe the components of a CANDU reactor

Utilize simple codes employed in reactor neutronic design.

Academic misconduct

Academic misconduct includes, but is not limited to:

Cheating on examinations, assignments, reports, or other work used to evaluate student performance.
Cheating includes copying from another student’s work or allowing one’s own work to be copied,
submitting another person’s work as one’s own, fabrication of data, consultation with an unauthorized
person during an examination, or use of unauthorized aids.



Tentative Course Outline
1. Introduction

2. Atomic And Nuclear Physics
2.1.  Photoelectric Effect
2.2. Compton Effect
2.3.  Atomic Spectra
2.4.  Bohr’s Atomic Model
2.5.  De Broglie Waves
2.6.  Elements of Relativity
2.7.  Relativistic Mass Formula
2.8. Relativistic Energy
2.9. Relativistic Momentum
2.10. Nuclear Constituents
2.11. Notations of Isotopes
2.12. Descriptions of Nuclear Particles (Mass, Charge, Spin)
2.13. Binding Energy
2.14. The Liquid Drop Nuclear Model
2.15. The Decay Process
2.16. Natural Radioactivity
2.17. Induced Radioactivity
2.18. Radioactive Families

3. Interaction of Radiation With Matter
3.1. Interactions of Heavy Charged Particles
3.2.  Interactions of Light Charged Particles
3.3. Interactions of Gamma Radiation
3.4. Interactions of Neutrons
3.5.  Types of Nuclear Reactions
3.6.  Kinematics of Nuclear Reactions
3.7. Reaction Cross Sections
3.8.  Attenuation and Shielding

4. Nuclear Reactors and Nuclear Power
4.1. The Fission Chain Reaction
4.2. Reactor Fuel, Moderator and Coolant
4.3.  Main Nuclear Plant Components

5. Basic Concepts of Neutron Physics
5.1.  Fission
5.2.  Flux, Current, Source
5.3.  Reaction Rate Densities
5.4.  Fick's Law and the Diffusion Equation
5.5.  Solutions to the Diffusion Equation
5.6.  The Group Diffusion Model
5.7.  Two-Energy-Group Neutron Moderation



6. Nuclear Reactor Theory
6.1. Fundamental Neutronic Problems (Fixed-Source and Eigenvalue)
6.2.  Criticality
6.3. Homogeneous Reactors - Flux Separability In Energy And Space
6.4. One-Group Reactor Equation
6.5. One-Group Flux Solution for Different-Shape Homogeneous Reactors (Slab, Parallelepiped,
Cylinder, Sphere)
6.6.  Multiregion Problems - Reflector

7. Nuclear Reactor Kinetics/Dynamics
7.1.  Classification of Time-Dependent Problems.
7.2.  Reactor Kinetics
7.3.  Reactivity Devices
7.4.  Temperature Effects On Reactivity
8. Discussion of Basic CANDU Design
9. Discussion of CANDU Computational Schemes
10. Discussion of CANDU LOCA Calculations
11. Hands-on Calculations with POWDERPUFS-V Lattice Computer Code, In-Class And Home Exercises

12. Xe-l Kinetics, Calculations and Exercises



Quantum Properties of Matter
(and Light)

All figures reproduced from: R. Serway “Physics for Scientists and Engineers with Modern Physics”, third edition,
volume II.
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Is light a wave or Is it made up of
particles?

e Newton

— particles (cites reflection and
propagation in straight line)

 Huyghens

— wave (cites interference, refraction,
diffraction)
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Beginning of 20" Century

 The wave theory of light was prevalent as
It seemed to explain all phenomena
iInvolving light.
— reflection
— Interference (diffraction as well)

 Moreover, Maxwell had shown light to be
an electromagnetic wave (as were X rays).

 Huyghens seemed to have won the
dispute, but....
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A few phenomena could not be
explained by the wave theory

Black body radiation
Photoelectric effect
Compton effect
Atomic spectra
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Black Body Radiation

A “black body” Is a body that only absorbs and
emits light, but does not reflect it.

A black body emits light with a continuous
spectrum.

Attempts to explain theoretically the shape of the
spectrum of the black body radiation based on
classical theory had failed, especially for small
wavelengths.

Max Planck was able to explain the entire
spectrum, by assuming that energy could only
be absorbed or emitted in discrete units called
guanta.
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Max Planck — Light Quanta

Energy of one quantum E =hf
h=6.626x10"7*J-s Planck’s Constant

Same dimensions as angular momentum
Very small number
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Photoelectric Effect

Light

 When light is incident
on the (metallic)

cathode, electrons are
emitted. (called ©
photoelectrons) {(v)

—i|1]
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Laws of the Photoelectric Effect

1. No electrons emitted if
the frequency of the
Incident light is lower Kk __
than a certain value,
called the “cutoff
frequency”.

2. The maximum KE of
electrons increases
linearly with light
frequency.

2005 E. Nichita



Laws of the Photoelectric Effect

cont.
3. Above the cutoff
frequency, the *
maximum number of Current

photoelectrons is
proportional to the light
Intensity.

4. Electrons are emitted
almost instantaneously
(109 s after beginning of
illumination) although

I

High intensity

Low intensity

the classical
electromagnetic theory
would predict some
delay.

Applied voltage
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Einstein’s Theory of the PE Effect

1. A light beam consists of quanta (photons), each
of energy E=hf (Planck’s hypothesis),
travelling at the speed of light, c

Photon with
‘/,,.- energy hf

> D—s
. | S
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Einstein’s Theory of the PE

2. Each photon gives all its energy
Instantaneously to an electron in the
metallic cathode.

— If, and only If, the photon’s energy Is higher
than the minimum binding energy in the
metal (called the work function, @), an
electron is emitted.

— Conseqguently, the maximum kinetic energy
of an electron Is:

KE__ =hf —®
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Values of Work Functions

Metal & (eV)
Na 2.28
Al 4.08
Cu 4.70
Zn 4.31
Ag 4.73
Pt 6.35
Pb 4.14

Fe 4.50

2005 E. Nichita



How Einstein’s theory explains the
four laws of the PE effect

1. Since KE,,=hf-® hasto o
be positive for the electron to ~ KEmx > 0= T >1-=1
be emitted, it follows that
nothing happens below a cutoff
frequency.

cutoff

2. KE., =hf-® describes
exactly the linear relationship
between the maximum kinetic
energy and light frequency that
was found experimentally. F
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How Einstein’s theory explains the
four laws of the PE effect

3. Since each photon has the same energy, equal
to hf , the intensity of the light is proportional
to the number of incident photons per unit time.
Since each photon transfers its energy to one
electron, it follows that the number of emitted
photoelectrons Is proportional to the intensity of
the incident light.

4. Since each photons interacts with a single
electron, the energy transfer happens
Instantaneously, rather that over a period of
time, as would be the case if energy was
distributed uniformly in the wave.
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The Compton Effect

 Named after Arthur H. Compton (1892-1962)
Interaction of em radiation with “free” electrons.

Graphite

|

target

[

[ 1< 8 = 90°
I

X-ray
source

Rotating crvstal

spectrometer
S
______ ™

™

e
.
g =

E Ionization

chamber
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Compton’s Measurements
o Frequency Intensity Intensity
of
scattered
radiation
depends .
only on
scattering
angle.

= )"

Primary beam

. - ST N SN T .
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Classical Theory - Inadequate

* Frequency of scattered radiation
depends on beam intensity and time of
exposure.

p
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Compton’s Theory

 Photons undergo elastic collisions with

“free” electrons.
Vs Recoiling eleciron

v/”flﬂ
————————— S ey eainemeeen
1 3, \ /

\

\

Scattered photon
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Compton’s Theory cont.

To explain the shift in wavelength, the
laws of conservation of relativistic energy
and momentum need to be applied.

. / /
EOph ™ EOe IR Eph T Ee
= =R R =4
pOph T pOe o pph T pe
According to Compton’s theory:

h
m,.C

A=A, (1-cosé)
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Atomic Spectra

e Emission

ilnm) 490 500 600 700

]
H m

o Absorption

o Atomic spectra are discrete (appear as
lines)

2005 E. Nichita



Hydrogen Spectrum

 The wavelengths of emitted/absorbed
electromagnetic radiation were found
(empirically) to satisfy an interesting
relationship:

i=RH(i—ij n>m

A m° n?
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Hydrogen Spectrum

 All lines obtained for a given m, are said to
form a series.

e Balmer series, n=2 — first one discovered

(Johann Balmer) c:u..;;.:ﬁ;-m.e
( H:H, H, H,
N
1 1 1
/1_: RH(?_FJ n>2

2 \ 156.1 656.3
364.6 \
4102 4341

e} (11I11)
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Rutherford’s Model of the Hydrogen

Atom
* Electrostatic sdsaandt
force i g
" a? / N6
Fe — — k—2 4

dre,r® r- /

« Centripetal |'
force 1
2
\V \
F.=m,—
r

C €

e The two are one
and the same
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Bohr's Model of the Hydrogen Atom

The hydrogen atom has only one electron.
The nucleus consists of only one proton

Bohr started from Rutherford’s model, which
assumed the negatively-charged electron to
gravitate around the positively-charged proton
on a circular orbit.

— The electrostatic attraction force acts as the
centripetal force.

Rutherford’s model had limitations

— According to the electromagnetic theory, orbiting
electrons would radiate light continuously at the
frequency they rotated, and in doing so they would
lose energy, and eventually fall onto the nucleus.

— This phenomenon was never observed.
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Bohr's Model of the Hydrogen Atom

(cont.)
« Bohr's additional hypotheses (nonrelativistic)

— Certain orbits (radii) are stable. No radiative loss
of energy occurs for these orbits.

— The allowed (stable) orbits are those for which
the orbital angular momentum has values given

by:
h

L=myNvr=nh;, li=——o
27

— Electrons can jump from one orbit to another.
Only when such a jump occurs energy Is either
emitted or absorbed, in the form of a photon.
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Bohr's Model of the Hydrogen Atom
(cont.)

* Need to find the radius and energy of
stable orbits (also called Bohr orbits).

e Start from equating the centripetal force
with the electrostatic force

a2
2

I

m =K

€

V2
I
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Bohr's Model of the Hydrogen Atom
(cont.)

e Relationship between radius and speed

v e e
m,—=k— < my’ =k—
r r
2
e
vi=k——
m.r
k e
V_
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Bohr's Model of the Hydrogen Atom
(cont.)

e Expression of angular momentum

k e
L=myvr=m, r:W/mekeﬁ
U m. j

* Use the postulated values of the angular
momentum to find the radii of the stable
orbits.

L, =nh < mke,/r, =npn (equation forr)
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Bohr's Model of the Hydrogen Atom
(cont.)

 Radil of stable orbits

JMKe = e i = Fe
o 7’ e

m_ ke’

T T

o
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Bohr's Model of the Hydrogen Atom

(cont.)
* Energy of electron on a stable orbit

2 2
E, = PE, + KE, =& eV
r 2
e Substitute previously found expression for V?
2
€
v =k ——
m.r
* Find simpler expression for energy (not yet final)
2 2 2
= :_ki+ m,, ¢ _ ke

r 2 m.r 2—rn
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Bohr's Model of the Hydrogen Atom
(cont.)

* Final formula for electron’s energy on
stable orbit

kez n2h2
E =— I = 2
5 / Meke
!
= __ ke*  mk’e’ 1 mk?e*
T T ot B ST g

2

m_ke*

2005 E. Nichita



Bohr's Model of the Hydrogen Atom
(cont.)

e Transitions (Jumps)
— When an electron jumps from one orbit to another, it has to
either absorb or emit energy, in the form of a photon.

— The energy of the photon equals the difference between the
energies of the two orbits. For an electron jumping from orbit n
to orbit m, we have:

2 4 2 4 2 4
hf=E —E_= 12 mekze - 12 mekze :mekze (1 1)
m- 2h n- 2h 2h

m? n?

— If n>m, the potential energy of the initial state (n) is larger than
that of the final state (m) and energy is emitted in the form of a
photon. If m>n, the situation is reversed and a photon needs to
be absorbed.
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Bohr's Model of the Hydrogen Atom
(cont.)

e Transitions

— expressing the reciprocal of the wavelength of
the photon: 1 _ f

A C
mkoe*( 1 1 f 1 mk’* (1 1
ht = 2 T |5 2 T 2
Q 2% Q m- n c A 2hhc \m“ n
1 1
X — X —
hc hc

1 mk’*(1 1 . .
= — —— Previously discovered
A 2rthe \m® n by Balmer for m=2
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Bohr's Model of the Hydrogen Atom

(cont.)
.. n E (eV)
 Transitions % 0.00
1 _ mekze4 1 _ l _ R 1 . 1 5 . :_Ez_rl
A 2h%hc \m? n? "lm2 n2) 2T 1Y -
3 > = 1.1
Paschen
Rydberg’s series
Constant 2 - L L -3.40
Balmer
| SEres
Lyman
ll series
1 -13.6
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Light: Wave or Particle?

 Wave e Conclusion
— Reflection — Light cannot be
— Refraction described entirely as
_ Interference either wave or particle.
— Diffraction — Wave behavior is
_ displayed in some
* Particle situations, while
— Black body radiation particle behavior is
— Photoelectric effect displayed in others.
— Compton effect — Light displays wave-

— Discrete (line) atomic particle “duality”.

spectra

2005 E. Nichita



Do other particles display the
wave-particle duality?

e Louis de Broglie (1892-1987)

— Stated that all particles display the wave-
particle duality.

— Each particle (not just photons) has a wave
associated with it. The associated wave (also
called De Broglie wave) satisfies one of the
relations found to be true for photons:

A p
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De Broglie waves and Bohr’s
model

 The Bohr orbits are an integer number of
electron wavelengths.

« \WWe’'ll prove this in the following slides

K e
~ 2
m T, [k ¢
m, | n’p° n 7
n°h* = m_ke
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De Broglie waves and Bohr’s
model (cont.)

y) 2

V= kﬁ; n 7
h h nh#
ﬂ:—: p—
— > < ek_— e
m_ ke n 7
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De Broglie waves and Bohr’s
model (cont.)

232 212 2

N“h n°h n°h#

rn: 2ﬁ>Cn=27Zrn=27Z' 2: >

meke x meke meke

ﬂ Circumference of
orbit n
n°h#
C.  mke’
nh7 —l=_—t—_=p —
l — > — A nh# :>Cn o nﬂ’

M ke m k62
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De Broglie waves and Bohr’s
model (cont.)

 The Bohr orbits are an integer number of
de Broglie wavelengths

 Immediate consequence:

: 22, =N—
ﬂ/ — — ﬂ
D MV h
We have recovered Bohr's — mevrn =N— = nh

quantization of angular 272'
momentum
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De Broglie waves and Bohr’s
model (cont.)

 The Bohr orbits are
an integer number
of de Broglie
wavelengths

* \We can picture a
stationary wave that
goes along the Bohr
orbit.
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Summary

Each particle (not just photons) has an associated wave,
called De Broglie wave.

The existence of De Broglie waves for electrons is
consistent with Bohr’'s atomic model.

De Broglie waves were demonstrated for other particles
as well, by diffraction experiments.

Quantum mechanics expands on these ideas (but we
won'’t go into gquantum mechanics) and shows that each
system of particles has an associated wave function ¥
which describes the system’s properties.

The wave function (for any system) is found by solving
the Schrodinger Equation.
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Special Relativity



L =f

Special Relativity - Formulas L s

1’\ _ vES
2 M
Vv

e

Relativistic momentum V2

Relativistic mass m=

Relativistic (total) energy E=mc

Relativistic kinetic energy KE = mc*® — mOC2
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Structure and States of the
Atom



Hydrogenoid Atoms

 The Hydrogen atom is the simplest
possible.

* Next level of complexity: Hydrogenoid
atoms (lons)

— Atoms that have lost all but one of their
electrons.

— Nucleus made of Z protons and N neutrons

— Bohr’'s model applies very well to hydrogenoid
atoms.
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Hydrogenoid Atoms

1 n°h°
r = >
Z m.ke
1 _,mk"
En — ——222 > ‘
n 2"

i_zzmekze“( 1 1)

A 2h%hc {m? n?
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Bohr’'s model for
Hydrogen and Hydrogenoid Atoms

* The orbit of the electron, and Its energy IS
characterized by one integer, called
principal qguantum number: n

__szk
n° 2h°

e The state of the atom Is characterized

completely by the principal quantum
number, n.

E =

n
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More accurate model
(guantum mechanics)
* Four guantum numbers for each electron

—n=1,2,3.... principal qguantum number
—1=0,1, 2...n orbital quantum number

-m, =-l, -(I-1), ...0 ... (I-1), | orbital magnetic
guantum number

-m, =-1/2 or +1/2 Spin magnetic
guantum number

— Remember that electrons have an intrinsic
“spin” angular momentum, equal to 1/2.
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Significance and simplistic
Interpretation of quantum numbers

* We can have a slightly more complicated model
of the atom, whereby orbits are elliptical.

— n indexes the size of the major axis or, equivalently,
the energy of the orbit

— I indexes how “oval” the orbit is (I=0 corresponds to a
circle) or, equivalently, the angular momentum of the
electron

— m, indexes the spatial orientation of the orbit plane or,
equivalently, the z component of the angular
momentum.

— m, indexes the orientation (or z component) of the
spin

e So there is an additional quantum number, s, the spin

angular momentum quantum number, which we don’t usually
specify, because it is always fixed at %z for electrons.
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n indexes the major axis of the
ellipse (the energy)
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| Indexes the minor axis of the ellipse
(the orbital angular momentum)

o Quantum
mechanical
expression for
angular
momentum:

L =/I(1 +1)7
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m, indexes the orientation of the plane of the orbit
(z component of the angular momentum)

QM expression for
Lz

2005 E. Nichita



S, Indexes the orientation of the

spin
* The spin angular Spin up
momentum fl
number is the | Spin down

same In both
cases, and equal
to 1/2.

QM gives:

'{w
S = \/S(S + 1)h (a) (b)
S m h Reproduced form R. Serway, "Physics for Scientists and Engineers", 3 edition
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Atoms with more than one electron
(Shell Model)

« Pauli’s exclusion principle:

— There cannot be more than one electron in a state
characterized by the same combination of quantum
numbers.

— Shell

o All states with the same n

— Subshell

e All states with same n and |

— Orbital

 All states with same n, |, and m,
« Can “hold” two electrons (corresponding to m_ = +1/2)
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Atomic and Nuclear Constituents

e AtOom
— Electrons

— Nucleus (made up of nucleons)
e protons
* neutrons

 The nucleus is “held together” by nuclear
attraction forces. These have to be stronger
than the repulsive electrostatic forces.

* For neutral atoms, the number of protons in the
nucleus equals the number of electrons in orbit.
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Some subatomic particles

proton

neutron

electron (beta particle)

positron

photon (gamma particle)

neutrino

antineutrino

alpha particle (2 protons + 2 neutrons)
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Properties of fundamental particles

* Mass (rest mass)

e charge

e spin (denoted by s)

e parity
— property resulting from Quantum Mechanics.
— describes the parity of the wave function

+ < p(r)=w(-T)
o y(f)=-y(-T)

« All these gquantities are important because
they are conserved in nuclear reactions.
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Properties of Nuclel

Atomic number — Z = number of protons

Mass number — A = total number of
nucleons (protons and neutrons)

Number of neutrons — N

The atomic number Z identifies the nuclear
species.

Two nuclel with the same Z but different N
are called isotopes.

Notation: ZAX X Is the chemical symbol
Alternative notation: (Z,A)
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Other properties of nuclel
(parallel those of particles)

Mass

charge (+Ze)
spin (s)
parity
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Atomic Mass Unit (amu)

Defined as 1/12 of the mass of a C12 atom

— That means that it is 1/12 of the C12 nucleus, plus the
mass of 1/2 electron.

Atomic weight = Ratio between the mass of the
atom and 1 amu (dimensionless number)

Molecular weight = Ratio between the mass of a
molecule and 1 amu (dimensionless number)

1 Mole — Quantity of a pure substance that has
the same mass expressed in grams as the
atom’s (or molecule’s) mass expressed in amul.

1 Mole Has N, =6.023x10%3 atoms (molecules)

Na is the ratio between 1g and 1 amu. (There
are N, amus in a gram)
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Atomic Mass vs. Atomic Weight

e Atomic mass has dimensions of mass
(e.g. Kg, g, amu, etc.)

« Atomic weight has no dimensions.

« Atomic weight is numerically equal to the
atomic mass expressed in amus.

e 12C has an atomic mass of 12 amus and
an atomic weight of 12.
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amu expressed In Kg

* N, atoms of 1°C weigh 12 g. It follows that 1
amu weighs 1/N, grams.

(g) =1.66x10"**(g) =1.66x10*" (kg)

1
=NA(9)=

12xN, 6.023x10%

2005 E. Nichita



Other means of expressing mass

 Because of the mass-energy equivalence
expressed by Einstein’s formula, E =mc?
mass can also be expressed in units of energy
over c2.

: 2 8 \?
+ For example: ;. _ 1kgxc :1x(3x10)(3):9X1016(Jj

c’ c’ c?
e Often in nuclear physics the energy is measured
In MeV, and the mass in MeV/c2. To find the

relation between 1kg and one MeV/c? we write:

MeV  10°¢V  10°x1.602x107°CxV
¢®  (3x10°(m/s)f  (3x10%(m/s)f

| 10°x1.602x1073)

 (3x10°(m/s)f

1

~1.78x10%*Kg

2005 E. Nichita



Examples of elementary particle

Mass
particle mass
kg amu MeV/c?
proton | 1.6726E-27 | 1.007276 | 938.28
neutron | 1.6750E-27 | 1.008665 | 939.57
electron | 9.1090E-31 | 5.486E-4 0.511
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Atomic Weight for a Mixture of
Atoms

e Consider a mixture of 30% (by atom) C
and 70% (by atom) Al. What Is the
average atomic weight of the mixture?

e ANswer
— Assume there are N atoms in total

— of these
* N.=0.3N are C
* N,=0.7N are Al

2005 E. Nichita



Atomic Weight for a Mixture of
Atoms (cont)

* The total mass of the mixture (in amu) Is:
m=N.M. +N,M, =0.3NM_ +0.7NM ,, (amu)

 The average mass of one atom (in amu) IS:

m 03NM, +0.7NM
N N
0.3M, +0.7M,, =0.3x12 + 0.7 x13=12.7 (amu)

M
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Atomic Weight for a Mixture of
Atoms (cont)

* In general

— For a mixture of n types of atoms, each with
atomic fraction X;=N./N, the average atomic
weight Is:

M =3 XM,
=1

— If the different types of atoms are isotopes of
the same atom, the atomic fractions are called
Isotopic abundances.
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Properties and Structure of
Nuclel
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Nuclear Radius

e Assume that nucleil are made of “nuclear

material” of the same density o for all
species of nuclel.

e |t follows that the mass of the nucleus Is
given by:

m=pV =p 2
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Nuclear Radius (cont)

 The mass of the nucleus is given also by
the mass of its constituents (neutrons and

protons)
m=Nm_ +2Zm,

e Because the mass of the proton and the
one of the neutron are almost equal to 1
amu, we can write:

m=Nm_, +Zm = Namu+Zamu=(N +Z)amu = Aamu
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Nuclear Radius (cont)

e By writing the equality between the two
masses, we have:

4R’

Aamu = p

« Solving for R3, we obtain
R® = A(iamu)
Ao
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Nuclear Radius (cont)

e Solving for R, by taking the cube root on
both hands, we have:

Rzi/xs\/ 3 amu

Ao

amu =1.25x10 " m

. It turns out that: J 3
7P

Lo
e So: R=1.25x10"" x i/K[m]"’ note
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Binding Energy

e Since particles that constitute the nucleus
stay together (held by nuclear interaction
forces), the total energy of the nucleus
must be lower than the total energy of the
particles If they were separated.

B =|(A=Z)x Eppyron + Z X E roron |- E(2X )

neutron

e This is called the Binding Energy
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Binding Energy (cont.)

* Binding energy from a relativistic perspective

2

E C

neutron m neutron

E =m°  c?

proton proton

E(2X )= M X )
B — [(A_Z)X mr?eutros:2 +Z X mgrotorq;z]_ M( AX )02
=C ﬂ(A Z )X mneutron T Z X mproton ] MO(ZAX )}
A
e The mass of the nucleus is smaller than the
sum of the masses of Its constituents.
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Binding energy per nucleon (MeV)

Binding Energy per Nucleon

9.0

8.0

La 1 | 4
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sTh - |
6510 19Hf 199Hg 29Fr 239p,,
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1.0H2 scale
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Reproduced from W.S.C. Williams " Nuclear and Particle Physics"
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Question Period

e Q:If I climb to the top of the CN tower
(approximately 550 m) will my body mass
be larger?

* A: Yes, but not enough for people to
nOt|Ce. 8‘\8*‘}7 a-l”‘& ‘I'OP fg,JL 1 W@,_

Q;\:mbottomg ?/./. h‘ }S
bottom

mtop — Myotiom = C2

2
T0Kg x9.8m/°x550m _, o 1oy

2

C (3><108m/s)2
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Nuclear Models
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Shell Model
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Shell Model - Potential Well

 We can picture the
nucleons (protons and
neutrons) as “living” in a E
“potential well” created by
the nuclear forces.

* The binding energy is the Q
energy that needs to be

communicated to the
nucleons to allow all of
them to exit the well.
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More details on the potential well

Nucleons can occupy different energy levels in the well, just like electrons can
occupy different energy levels in an atom.

The state of the nucleus is given by the states (energy, spin, parity) of all its
nucleons.

Pauli’'s exclusion principle applies (No two nucleons can occupy the same
state).

~
B
>h=—
A

D Average binding energy per nucleon
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More details on the potential well

 Depending on the “arrangement” of nucleons on energy levels inside the well,
the nucleus can have different binding energies.

 The lowest energy level of the nucleus (corresponding to the largest binding
energy) is called the ground level, and the corresponding state is called the
ground state.

» Higher energy levels are called excited levels, and the corresponding states
are called excited states.

\ N\ T
E State 1 E
(around) i State 2
(excited)
u I-1c]
Eexcited > Eground
Bground > Bexcited

5
o '\’M (IZ\I X excited )> M (IZ\I X ground )C T
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Nuclear Energy Levels

 Similar to
atomic
energy
levels
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Liquid Drop Model



Binding energy per nucleon (MeV)

Binding Energy per Nucleon
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Reproduced from W.S.C. Williams " Nuclear and Particle Physics"
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Liquid Drop Nuclear Model

« Attempts to express the binding energy as
a function of nuclear characteristics.
e Leads to a semiempirical formula.

— Shape of formula determined from the model
— Values of constants determined from

measurement fopi= NARTLE = AT
2 2
B=a,A-aA -2 ) a (A-22) +3(Z, A)

2005 E. Nichita



Liquid Drop Model — Meaning of Terms

a, — Volume effect — proportional to the “volume” of the nucleus, which
can be considered to be roughly proportional to A. This term was
iIntroduced because it was observed that the binding energy per nucleon
IS almost constant.

a, — Surface effect — proportional to the “surface” of the nucleus, roughly
proportional to A%3. This negative term was introduced because the
nucleons situated close to the surface have fewer neighbors, and hence
contribute less to the binding energy.

a, — Coulomb effect — electrostatic repulsion between protons has a
potential energy 2% 2EY

r

a, — Asimmetry effect. It vas observed that nuclei with N=Z are more
stable, hence the binding energy is probably smaller if Z and N differ.
This term accounts for that effect.

6(Z,A) Pairing term. Introduced because it was found experimentally
that two protons or two neutrons are bound stronger than a proton and a
neutron. Itis zero for odd A, -a,— for both Zand N odd

and +a,-*- for both Z and N evefy
A2
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Liquid Drop Model

« Numerical values of 9 15.7 MeV
coefficients v

a; |17.8 MeV
a. |0.71 MeV
a, |23.6 MeV

a, |12.0 MeV
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Nuclear Reactions
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General Expression
Ayl Ao
2 X+ X =Y+,
e Q value

Q= M2, b M2, )Moy e o2y,

Q>0 — exothermic reaction (provides energy to
the outside)

Q<0 — endothermic reaction (needs
energy from outside in order to proceed)

 The liberated energy is found as kinetic energy
of the products, and/or as energy of the emitted
particles (photons or other) with zero rest mass
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X + X, — Y, +Y_+

1

SR EM ) = MR + MG

cMOe) ) = CMOCK M)+ By
ASJ%«[«;. Fesctaots /l—./é;// 2t-ver S

(

UM (x) et ML (5 F MK, +éﬁT +

”‘\/m . By
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Conservation Laws

* The following quantities are conserved in a
nuclear reaction

— charge

— number of nucleons
— energy

— momentum
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Conservation Laws

* Conservation of charge
Ly+Lly,=L,+ZL,

e Conservation of number of nucleons

A +A, = Ay1 + Ay2
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Conservation Laws

o If additional particles enter or exit the
reaction, their charge aninumber of
nucleons need to be accounted for when

writing the conservation laws
 Example
XK DY Y, e

L +L,= Zyl +Zy2 —1

 \We can represent the electron as ‘e
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Conservation Laws

e Conservation of momentum

—

P(X,)+P(X,)=P(Y)+P(Y,)

» Conservation of energy

— Kinetic + Rest

KEx1 -+ KExa+|Mo( 20X, )+ Mo 22X, )? =
~ KEvi+ KEv2+ M 0(§§3Y)+ M(22, |5

y2




Fission

,N+%5°U — X +Y + neutrons

e Possible fission
reactions
s N+55U = Xe+ 2 Sr +2n

1 235 132 101
N+, U—Sn+,,Mo +3n

Fission Yield

 Distribution of
fragments

70

120

170
A
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Radioactive Decay
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Radioactivity

» Discovered first by Henri Becquerel (1852-
1908).

e Becquerel discovered that a mineral containing
Uranium would darken a photographic plate
even when the latter was wrapped in opaque

paper.

* In 1903 Becquerel shared the Physics Nobel
Prize with Pierre and Marie Curie, for their
discovery and work on radioactivity.
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Radioactivity

e Some nuclel are stable, while others are
unstable.

e Unstable nuclel decay, by emitting a particle
and changing into a different nucleus.

 Most common types of decay (others possible
too):
— Alpha ( ;05), Helium nucleus emission
— Beta (_/$ ), electron emission
— Beta plus ( '3 ) positron emission
— Gamma ( 07/ ), photon emission

— Electron capture (an electron is “captured” rather than
emitted)
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adioactive Decay, qugner
nucleus nucleus
A A—m m
XLt
particle

e Charge and number of nucleons are

conserved.

 For gamma decay, technically the nucleus
does not change into a different one. Only
Its energy state changes.

 Electron capture (still classified as “decay”)

A 0 A
S X+_e—, Y
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Alternative Notations

e General decay

(Z,A) > (Z—-n,A—m)+(n,m)
e Alpha

(Z,A) > (Z-2,A-4)+ia
e Beta minus

(Z,A) > (Z+1L, A+ B+0

* Electron capture
(Z,A)+e” > (Z-1,A)
(Z,A)+ 8 > (Z-1,A)
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Characteristics of Radioactive
Decay

e Nuclel decay randomly.

— It is iImpossible to predict which nuclei will decay in a
given period of time, and which not.

— It is impossible to predict when a particular nucleus
will decay.
 On average, for large initial numbers of nuclel
and for short periods of time At, the number of
nuclei that decay within At is proportional to the
time At, and to the original number of nuclei
present at the beginning of the time interval.
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Derivation of the Law of
Radioactive Decay

Let N(t) be the number of X-type nuclel present
at time t.

Let At be a short time interval.

According to the second bullet on the previous
slide, we have, on average:

AN =N(t)£N(t+A) =—AxN(t)xAL

A Is called the decay constant, and is measured
in s,
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Derivation (cont)

* The previous can be rewritten as:

AN
== = ANt
At ®

« which, considering that At is small, yields:

dN
— = —AN(t
it ()
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Derivation (cont)

 Eq. (3) Is an ordinary differential equation with
constant coefficients. Its solution is of the form:

—ﬁt+C Ce—/lt . C _ eC

e The multiplicative constant C can be determined
from the number of nuclei present at t=0.

N@O)=N,=Cxe ™ =C
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Derivation (cont)

o |t follows that the number of X-type nuclel
IS given at any time t by:

N(t)=N,xe™

 Law of Radioactive Decay
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Example

e At t=0, a sample of ““Na weights 1.0 mg.
How many beta particles are emitted in an
hour? (A =1.2836x10~s™)

e Solution

— The number of emitted particles equals the
number of decayed nuclei:

AN=N, -N@t)=N, N, xe™* =N, x{1-¢*}
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Example

 The Initlal number of Na nuclel Is:

m _10x10°Kg _1.0x10™ Kg _
M 24amu 24 amu
1.0x107° ~1.0x107°

x N
24 A 24

 Hence the number of emitted particles Is:

N, =

x6.023x10” =2.51x10"°

AN =2.51x10' x (1 —g 29610360 )1 133,10’
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Half Life

e Definition

— The half life, T,,,, of a radioactive species Is
the time after which the initial number of
nuclel decreases to one half.

e Expression
— By definition:

N
N (TI/Z) — 70
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Expression of Half-Life

e This Is equivalent to:

N
~AxTyp 270

2
 Dividing be N, we obtain:

e—/ile/z _ l

2
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Expression of Half-Life

e By taking the natural logarithm of both
sides we get:

_axT, zln(lj:_ln(z)

2
* Finally, we can solve for T,,,:
In(2)
Ty, =

A
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Half Life Important Notes

« Half life can be measured from any
moment of time. The number of nuclel left
after T,,, elapses will be half of those
existent at t,,.

 The number of remaining radioactive
nuclel never reaches zero. However, it
can become negligibly small.
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Exponential Decay
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Law of Radioactive Decay —
Probabillistic Interpretation

* N(t) out of N, nuclel do not decay.

e It cannot be determined a priori which
nuclel do not decay and which do.

» The ratio N(t)/N, can be interpreted as the
probability of one nucleus not decaying
after time t.

PND _ e—ﬂ,xt
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Law of Radioactive Decay —

Probabillistic Interpretation

* Conversely, the probability that a nucleus
does decay after time t is:

P, =1-P, =1-¢*
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Activity

 The rate at which a radioactive sample decays Is
called activity.

dN (1)
A(t) = —
(t) it
e Equivalent definition
At)=—AN() < —% Noe_ﬂbt = ZNOe_M = AN (1)
e Units:

— 1 decay/second = 1 Becquerel (Bq)
— 1 Curie = 3.7x1019 Bq

2005 E. Nichita



Average Life of a Nucleus

At t=0 there are N, parent nuclel.
At time t, there are N parent nuclel left.
At time t, A(t)dt =N,e“dt decay in dt

These nuclel have “lived” t before
decaying.
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Average Life of a Nucleus

 To get the average life, we need to sum
(integrate) over dt and divide by the Initial
number of nuclel.

j tA(t)dt j tAN e “dt
0 0

T = =
NO NO

NoA[te dt
- = A[teMdt =
N 0
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Energy-Level Diagrams for Decay
(Decay Scheme)

Mass 3 CzM(Z’A)
(Energy)
> Q
) ¢*M(Z-n,A-m)+ ¢°M(n,m)
g (at rest)

¢ Q=[M(Z,A)-M(Z-n,A-m)-M(n,m)]c?
Q>0 In order for the decay to be energetically possible

* By convention, the lowest energy on this graph is taken to
be zero (energy expressed relative to the lowest value).
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Multimodal Decay

e Some nuclel can decay in more than one way

Mass (Energy)

(100-a)%
a%
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4+ 6.01 MeV

33 5.24

Example of
Energy Level 2 e
Diagram with e

Multimodal I

Gamma Decay

Reproduced from W.S.C. Williams " Nuclear and Particle Physics"

e G
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0aPu  1=5.43x10°years

51 o 4.983 MeV
/; /,

Example of T
Energy Level
Diagram with

Multimodal i /
Alpha Decay /1] /

/ /.f S 0 74%, T,=4.901 MeV
[ g 26%, T, =4.857. Mell
. | @ 0.11%, T.=4.755 MeV

-7L7La-’3 1.5x107°%%, T,=4.599 MeV

I i /
L
6* 307.2 keV
4 148.4
0 _2'1—_“ 1 44.9
o 28 — 0G.S. 209p,,

Reproduced from W.S.C. Williams " Nuclear and Particle Physics"
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 Example of

Ener?y 00586 LL.(10.5m) 99 + %
0.0 !

L?Ve il Cao (5.26 ]f_:' H \
Diagram A =l

_ W+ % 2.158
with 0.013%

' 0L12% .~ 7 !
Multimodal % |
Beta Decay e ! 1.332
L1 _an

o0 N
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Multimodal Decay (cont)

Branching fractions
— Fraction of nuclei that decay in a certain mode
— Have to add up to 100%

Consider a species of nucleus that can decay by
either reaction 1, or reaction 2.

Let dN be the total number of nuclei that decay
In dt. The branching factors are defines as:

dN,
f, =
dN
_ dN,
dN
f+f,=1

f2
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Multimodal Decay (cont)

Partial decay constants

L__dN@N)1

4= ? @dNN M
_ dN, 1 _ dN N,

2T dtN dthN 2
AL+A =4

Partial half-lives (What the half
life would be if only that decay
mode was present).

r_In2
4,

;2
2’2

| 1 |
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Radioactive Families
(Decay Chains)

e Consider a nuclide whose daughter is also
unstable and decays.

A A—m m
LZ(?__)Z—-nR_l_nP

A—-m A-m-m’ mpmr
S R— S+, P

Z-—n—-n'

* This Is called a radioactive family, or
series.

 Radioactive families can have more than
two members.
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Example of Radioactive Family

238

234

230

226

222

218

214

210

206

Decay series A (module 4)=2 Q.
(MeV)
92U
arl 4.27
B %
- goTh —=g,Pa—=g,U
a'i 4.86
-~ g0Th
n’l 4.77
= ggRa
! a’l 4.87
[ gﬁRn
@l 5.59
o 84P0
a-l’ 6.11
Pyl 1Bl
= ngb _-'ggBl_"'gqpo {a) 5 62
«al(a) al(b)
l f?’ l s B (b) 7.83
= 31T| 32Pb_"'838| 34PO
@ 5.41
& aPb

Reproduced from W.S.C. Williams " Nuclear and Particle Physics"
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Atom Density

e Also called number density.
 |s the Number of Atoms per Unit Volume

e Connection with (mass) density
—n = # of atoms in volume V
— M = mass of each atom (dimensions of mass)

— M = atomic weight (dimensionless)
m nM - n

_N:nAtim density — p=g=T-=MZ=MN=
N == 1g N
V =MxamuxN=M—N=M—(g) =
—— > N, N,
,O—v _ 5AN—(9)
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Interaction of Radiation with
Matter



Heavy Charged Particles
e.g. alpha particles

Interact mostly with electrons (there are
usually much more electrons than nuclei)
via Coulombic force

Are much heavier than electrons

Lose little energy in each individual
Interaction with any one electron

Eventually do slow down as a
conseguence of the many interactions

Have straight-line trajectories
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ce. not heevy

Fast Light Charged Particles
(e.g. electrons)

Interact mostly with electrons (there are usually
much more electrons than nuclei) via Coulombic
force

Are much of the same mass as electrons
Have broken-line trajectories
Slow down quickly, after only few collisions.

Lose energy by two mechanisms

— collisions (Can lose a lot of energy in each individual
Interaction with any one electron)

— Radiation (When accelerated, incident electrons
produce bremsstrahlung - electromagnetic radiation —
photons)
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Photons

Can have several types of interactions (all
depend on energy)

— Photoelectric effect
— Compton Scattering
— Pair production
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Neutrons

 |Interact with nuclel via nuclear forces, since they
have no charge, hence they cannot interact
electrostatically with electrons

e Possible reactions
— Elastic scattering
— Inelastic Scattering
— radiative capture (absorption)
— (n, 2n)
— fission
— n, charged particle
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Photon Attenuation

e Attenuation of a collimated beam

— Consider a beam of photons of intensity |, that hits a
target of thickness x;, and a collimated detector that
measures the intensity of the beam emerging from
the target. The fact that the detector is collimated

means that only the particles that have not interacted
In any way are detected.

— The intensity is defined as the number of photons that
pass through a surface S per unit time per unit area.

N

| = P
Sxt
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Photons

e Attenuation of a collimated beam
I I

— —

—  —

— —

—

— ——
Xi Xt

* The atom (number) density of atoms in the slab
IS N,. (number of atoms per unit volume)

 The area of the material surface perpendicular
to the beam is denoted by S.
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Photons
Attenuation of Collimated Beam

Consider a thin “slice” of material, of thickness
dx situated at depth x in the material.

Consider each atom can be represented as a
hard ball of radius, r_ , and with a corresponding
Cross-section area o = r?

— Also called “microscopic cross section”

The number of atoms in the slice is dN = NaSdx
— where N, Is the atom density

Consider the photons to be infinitely small
(points)
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Photons
Attenuation of Collimated Beam

e Thin slice of material

X x+dx
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Photons

Attenuation of Collimated Beam

* View of the dx slice from the photons’

perspective

ﬁ Total area: S

— | Area "covered" by atoms: dN, xo
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Photons
Attenuation of Collimated Beam

e The probability that a photon “hits” an
atom equals the ratio between the area

“covered” by atoms and the total area of
the slice.

* Let N, (x) be the total number of photons
that enter the slice over atime t

Np(X) = 1 (x)St
* Let N (x+dx) be the total number of
photons that exit the slice dx over a time t

Np(X + dx) = 1 (x+ dx)St
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Photons
Attenuation of Collimated Beam

e The probabllity that a photon interacts with an
atom

dNxo N, xSxdxxo

dP., = =N.xoxdX=uxdx
coll S S a :u
e Attenuation coefficient
u=N_xo %

 Number of photons that interact and are
therefore removed from the beam

dNp = NpxdP,,; = Npx gz x dx

oll
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Photons

Attenuation of Collimated Beam

Setting up the differential equation

Account for the fact that the number of photons
that interact represent the change in the number
of photons that exit the slice, with a negative

sign

— dNp(X) = Np(X) x 22 x dX

Solution
Np(X) = Npoe‘“x

N,o Is the number of photons entering the

material at x=0 over time t

M = Np
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Photons
Attenuation of Collimated Beam

» Given that /Jfocfm

- //
 Sxt
e \We also have
No (X r%
()= X g g L oe
S xt T .
(2
1! A
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Photon Attenuation

e Exponential attenuation

N(X) o
Or 0.8 \
x)
\\\
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Reaction (Collision) Rate Deqsaiy

 For a thin slice of thickness dx:

number of collisions
time x volume
. /én\lB N () xpxdx
tx S xdx Dix S x dx

CONL(X) () xSxmt
 txS a txS u=10u

R=F =
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Neutron Attenuation

e Same reasoning as for photons, but with a
few specific features

— Instead of the density of atoms previously
denoted by N, we talk about the density of
nuclel, denoted simply by N. That is because
neutrons interact with nuclei and not with
atoms as a whole.

 The product Ng Is called macroscopic
cross section and denoted by X~

>=No
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Neutron Reaction (Collision) Rate De-siy

e Same as for photons, but with different
notations

R=F =12
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Microscopic Cross Sections
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Consider a single nucleus in a parallel beam of monoenergetic
neutrons

vy

vy

n/m?/s] ' \

Assume (for now) that scattering and absorption are the only
possible reactions.
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Reaction Rates (for a single nucleus)
R, =R, +R,

Probability of a Certain Reaction Type

Rt
o R
R
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Microscopic Cross sections for Individual Reactions

R, =lo,
R, =R, =g,k =lo, = o, =0,F,

R,=RP,=loP,=lo,= o,=0,P

\
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We can write:

R
Gtth
R
o, =—>
I
R

e The microscopic cross sections can hence be interpreted as the
probability of interaction (with one particular nucleus), per unit
Incident intensity.

a—

) = &l- T

AT \. N

L ﬂ = Cl'v,’3 » L1 S Ch 2005 E. Nichita



Thg sum of individual microscopic cross sections equals the total
macroscopic cross section. In our simplified case

O, =0, +t0,
For the general case:

c,=0,+0,+0,+0; +..
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Energy Dependence of Microscopic Cross Sections

e SO far we have assumed the beam to be monoenergetic
e In reality, neutrons can have different energies.

e The microscopic cross sections depend on the energy of the
Incident neutrons. The nucleus appears larger or smaller
depending on how fast the incoming neutron is moving!

o, =0, (E)
0, =0,(E)
o, =0,(E)

Reaction rate per nucleus

R(E) = lo(E)
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Energy Dependence of Microscopic Cross Section

10¢

P = 235

-'_'_‘d..r’ﬂ_
10" \\ '

10* - o

iy ]
s
=
=
o
.

1071 |
1D—I 1 ¥ i
10 102 10°° 10 10 102 b i0* i [ ngT

Energy (&V)
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Al Sy,

Volumetric Reaction (Collision) Rate

Collision Densit
R X I<I - jcoLl H’ o f uv}Qct’ (2 Vﬂl/'*‘ev
x N

F — single—nucleus nuclei R
_ \V — " 'single—nucleus

Where N is the number density of nuclel.

F=loxN =IX

We have thus recovered the formula obtained previously by using
the attenuation of a collimated beam.

Dependence of the energy of the incident neutrons
F(E)=Ilo(E)xN = IZ(E)

A
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Macroscopic Cross Sections for Mixtures

Consider a mixture of nucler with number densities N;.bombarded
by a parallel beam of monoenergetic neutrons of intensity I.

The volumetric reaction rate density for each nucleus type i Is:

F =lo, xN. =1%

—

Cy,~5
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The total reaction rate density is:

Z¢
F=SF=Ylo,xN, =136 xN, =
—1¥'5, =13 -

The total macroscopic cross section equals the sum of the (partial)
macroscopic cross sections for each nuclear species

=% =) Npo
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Neutron Beam Intensity

e Let n(x) be the
neutron density
(neutrons/cc)

o Consider / S
monoenergetic v (

neutrons (All have —)

the same speed) — -
 Letv be the speed X
of neutrons.
4X
dt:
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Neutron Beam Intensity

e Consider a thin “slice” of beam, of
thickness dx, that crosses surface S.

e There are dNn =nSdx neutrons in this
slice.
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Neutron Beam Intensity

e |t takes the

neutrons In the /
Qheﬂmeduﬁ? 4?7 /d S
to cross surface S. —Y,
 The beam intensity \
IS therefore: dx
X
dN,  nSdx
| = =——=nV
Sdt o dx

V
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Neutron Flux

What happens if we have a small piece of material bombarded by
two beams of monoenergetic neutrons (both having the same

energy)?
=

Reaction (collision) Rate |\ e

F=loxN +LoxN =(l,+1,) =
2 1 2
(nv+n V) =nvE = O3 ~
C D —
Neutron flux for monoenergetic neutrons:

L(D:nVJ
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Neutron Current

Consider a beam of monoenergetic neutrons

vV v v Y

The intensity is given by:

The flux is given by
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The current is a vectorial quantity:
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For two intersecting beams of different-energy neutrons:

Neutron Flux

L(D =NV, +N,V, =0, + D

Neutron Current
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For many intersecting beams:

=) nyv,=) @
5:Zni\7i :Zji
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Usefulness of Neutron Flux

Consider a small sample of material placed at the intersection of several
beams of neutrons.

The total collision density in the sample is equal to the sum of the
collision densities due to the neutrons in each beam.

F:ZE
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We rewrite the expression for the total collision density

F=) F=)Ix® =

=32» ®, =30
S0: |

F =20

Regardless of how many beams we have (one or more).
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Usefulness of Neutron Current

Consider a monoenergetic neutron beam that intersects a plane surface.

AN
A
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We want to determine the rate at which neutrons cross this surface. Per
unit area.

AN
SAt

R
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Before After (At elapsed)

-
.
Z = =

This is a side view. Imagine the figure to be 1 cm thick.
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The rate at which neutrons cross the surface in Atis given by the v
neutrons in the marked region. y S (9

AN nAV  nSvAtcosd

R — —
SAt  SAt SAL

— NViE0s 6 = NV = (NV)f = Ji

.3« a5 Cose

u
h=4.

0&..0(_-4);@
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Multiple Beams

The number of neutrons crossing the surface per unit time per unit area is
the sum of the neutrons in each beam that cross the surface per unit time

per unit area.
R=> R=) Jifi=

()
— Zji
ST

_

>
1

> )
>
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Energy Dependence of Neutron Density, Flux and Current

Consider now a parallel beam that has neutrons of different energies
(speeds).

n=dn/dE A‘

Dark Grey Area=
Neutrons with Energy
Between E and E + dE
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(volumetric) density of neutrons with energy less or equal to E.

n(E)
( Fuevyq” CI@!’@”JNL hefé“’“”/e“ﬂw

Neutron density spectrum

dn(E)
dE

n(E) =

(volumetric) density of neutrons with energy between E and E+dE.

n(E)dE
T’\(E): fét l'm@u%mf)ﬁ iv) C(U W\LL) elqemﬁ éeb/vu(’,@b f_))ﬁa/f—}'iﬁ
dVdE
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Beam intensity for neutrons with energy between E and E+dE

di(E) = p(E)V(E)dE

Energy-dependent beam intensity (Beam Intensity Spectrum)
I(E) =n(E)V(E)
Energy-dependent Flux (Flux spectrum)

®(E) = n(E)V(E)
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Energy Dependent Current (Current Spectrum)
J(E) =n(E)V(E)

Total Reaction Rate for Reaction x
R :j n(E)V(E)Z, (E)dE = j ®(E)z, (E)dE
0

Subscript x can stand for total collisions, or just absorption, or elastic
scattering, etc.
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H)@LV(

Energy Loss inlScattering Collisions
Read section from textbook

Important Results

2
(o= 53] E-0E
A+1

The energy of the scattered neutron is always lower than the energy of
the incident neutron.

The slowing down of neutrons by elastic collisions is called moderation.

The lower the mass number of the target nucleus, the lower the minimum
energy of the scattered neutron.
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For >°U, we have:

2
(El)min — E E 234 E O 98E
A+1 236

Not an effective moderator.
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For 'H we have:

@[22 {2 -0
A+1 2

Effective moderator. A neutron can lose all its energy in an elastic
collision with a Hydrogen nucleus (proton).

Hydrogen Is present in water. Water is used as moderator.

The bonds with O are very weak compared to the forces entailed in the
elastic collision. The H nucleus can be considered free.
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(91 269 9%9

Neutron Attenuation Revisited
Parallel beam of monoenergetic neutrons

For such a beam

W\

rf

O=J

\dx
X
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Neutron balance in the volume of thickness dx

1(X)S = 1(x+dx)S = %(X)CD(X)SdX/

neutrons
exiting the
volume

neutrons
entering the
volume

neutrons colliding
(reacting) in the
volume
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The neutron balance equation can be rewritten:
| (X)S — I (x+dx)S =Z(x) I (x)Sdx

Dividing by SAX on both sides we obtain
| (X) — I (X + dX
W= X80y 01 )
X

Equivalent to:

dl (x) dl (x)

=2(X)1(X) < = —2(X) 1 (x)
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If the macroscopic cross section is constant, then:

di(x)
T 21 (X)

. : - X
Which can be integrated to obtain: o) &

1(x) =1(0)e™ \

Exactly what we obtained before, by using a different kind of
reasoning.

—

Lex) 1y (—O- o

Moral: If assumptions are right and reasoning correct, the
results are the same regardless of the method used.
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Mean Free Path

Neutrons that react (collide) between x and x+dx have had a
"free path" of length x.

To find the mean free path, we need to average over all the
neutrons that interact from x=0 to Xx=oo.
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T | (X)Zdx T 1 (0)e = dx

| (O)ZT xe " dx T xe " dx
0 0

| (O)Zofezxdx Tezxdx
0 0



S £5'dx= ﬁ‘}”‘ﬁ?é&

The numerator iIs integrated by parts to give

o | %( 00 e—Zx |
jxe‘zxdx — x( ) dx =
0 0 2

© a2X
A
1

a2X *
:L 52 ] 2
0
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The denominator integrates as:

0 _wx O\~
1
_[ ] - ==
O ) )
0
It follows that:
1
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Fission
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Fission

1., A A AD | =~ ~ 0
oM+ XA+ B+ N+ e +y
v =20r3

A & B = Fission Products (Fission Fragments)
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Conservation Laws

Number of nucleons
A, +A =A +A, +v
A +1=A +A +v

Charge
Ly, =L,+71; —[1
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Energy

c’[M(N)+M(X)]|=c?[M(A)+M (B)]+
+ve*M(n)+c’uM (e) + E,

M is the (total) relativistic mass
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Using the rest mass and kinetic energy E, we have:

CZ[Mo(n)+ MO(X)]+ E, =
=c’[M,(A)+M,(B)]+

+1vC°M,(n) + ¢’ M, (e) +
+E +E,+Ez +E; +Eg

M 1S the rest mass
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The above can be rewritten using the Q value:

CZ[Mo(n)+ Mo(x)]+ En =
=2 [M, (A)+M,(B)]+
+1vc°’M,(n)+c’ M, (e) +Q+E.

For fission, Q is approximately 200 MeV
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Distribution of Fission Energy

Emitted Energy., Recoverable Energy,

Form MeV Me V
Fission fragments 168 168
[1szion-product decay

fA-rays R g

¥ -TAYE 7 !

neutrinos 12 .
Prompt y-rays 7 7
Fission nentrons (kinetic energy) - 3
Capture y-rays — 312

Total 207 198207

Most energy is taken by fission fragments and deposited
locally.
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Fission Mechanism (simplified)

Fission occurs through the formatic  “ a compound nucleus
which, in turn, can decay very rapidly in several different
ways.

oN+X X 51X
Ax+1)(".<(_) A+B+y (model-prompt y)
7| —> A4B4+v,n  (mode 2 - promptn)

vp=2—3
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Both A' and B' can be stable or further decay in several
possible modes:

A (A' was stable)
— > A+y (model)
A — 5 A+ B (mode 3)
— 5 A"+ B, (mode 4)

1 (fast)
A+n  (delayedneutron)

\

If A' decays according to mode 4, then it Is called a precursor
and A" Is called an emitter.
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We cannot predict in advance which nuclei will be
precursors, but we can predict, on the average how many will
do so. This number is equal to the number of delayed
neutrons emitted, called the delayed neutron yield.

o # of delayed neutrons
: # of fissions

We cannot predict how many prompt neutrons will be emitted
In each reaction either. But we can predict how many will be

produced on the average. This is called the prompt neutron
yield.

_ #of prompt neutrons
# of fissions

Vi
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On the average, the fission reaction can be written:
N+ X > A+B+v n +vn, +L+y
The total neutron yield is defined as:
V=Vy+V,

The delayed neutron fraction is:

2005 E. Nichita



Delayed Neutrons

Are emitted by emitters which result from the beta decay of

Precursors.

There are 6 precursor (delayed neutron) groups, based on

their half-life.

TABLE 3.5 DELAYED NEUTRON DATA FOR THERMAL FISSION IN 23U

Half-Life Decay Constant Energy Yield, Neutrons Fraction
Group (sec) (1;, sec™') (ke V) per Fission (i)

I 55.72 0.0124 250 0.00052 0.0002135
7. 2,73 0.0305 560 000346 0.001424
L 6.22 0111 405 0.00310 0.001274
4 2.30 0,301 45() 0.00624 0.002568
2 0.610 1.14 — 0.00182 DL T4
6 0.230 3.01 - (0.00066 DLO0027 3

Total yield: 0.0155

Total delayed fraction (8): 0.0065

2005 E. Nichita



Fission Products (Heavy Nuclel)

Mass Is distributed asymmetrically.

10

=

Fission yield, %

0.0

0.001

Mass number
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Energy Dependence of Fission Cross Section for °U

23U is fissile, i.e. undergoes fission with near-zero energy
neutrons with high probability.
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Energy Dependence of Fission Cross Section for °°U

] 2 4 5] b 10 12 14 16
Energy MeV

38 is fissionable, but not fissile, i.e. it can undergo fission,
but with higher energy neutrons and with lower probability.
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Energy Spectrum of Fission Neutrons

Normalized Energy Spectrum

)= "E) __n(E)

¢ 0]

" [n(E)dE

o

It follows that:

TZ(E)dE =Ojooo "E) ge . . Tn(E)dE =1
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Energy Spectrum of Fission Neutrons

Prompt-neutron spectrum (Eag=2MeV)

0.3

x(E), (MeV)

E, MeV

Figure 3.14 The prompt neutron spectrum.

Delayed-neutron energies are slightly lower.
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Facts

e Fission neutron energies are much higher than thermal
energies (0.025 eV), so they are not appropriate for
efficient fission in fissile materials.

e To achieve fission efficiently, the neutrons need to be
slowed down (their energy needs to be reduced). This
process Is called moderation. It is achieved by elastic
collision with light nuclei (usually Hydrogen or
Deuterium)

e Reactors that use thermal neutrons for fission are called
Thermal Reactors.
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Fission-Related Parameters

Capture-to-fission ratio

Number of neutrons released per absorbed neutron.

n=v—

Oa

For mixtures of fissile and non-fissile elements:

1
n :Z_aiZViZfi
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Nuclear Fission Reactors
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Thermal Reactor Components

e Fuel - consists of nuclei that fission liberating energy

e Moderator - slows down fast neutrons resulting from
fission to thermal energies so they can fission fuel
nuclel

e Coolant - removes the heat

The three can be:
e mixed together - Homogeneous Reactor
e separated — Heterogeneous Reactor

Most reactors are heterogeneous.
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Power Reactors

e Pressurized Water Reactors

e Pressurized Heavy-Water Reactors (CANDU)
e Gas-Cooled Reactors

e Other

2005 E. Nichita



CANDU Reactors
e Heterogeneous
e Fuel: Natural Uranium Oxide
0(UO, 0.7% **U, 99.3% **°U)

e Coolant: Heavy Water (D,0)
e Moderator: Heavy Water (D,0)
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CANDU Reactor Schematic

Calandria

End Shield
|

Tubesheet ¥

o — p—

End Fitting

Feeder Pipe
AN

Channel Liner
Closure Tube

(Il |

Positioning
Assembly
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CANDU Reactor - How 1t Works

e Fissions take place in the fuel

e Most energy from fissions Is taken up by fission
fragments which stop In less that one micron.

e [n stopping, the fission fragments' kinetic energy
becomes heat, which raises the fuel temperature.

e The fuel is cooled by the coolant, which takes the heat
from the fuel to the steam generators.

e Neutrons are also produced from fission.

e Fission neutrons are slowed-down by elastic collisions
In the moderator and, to a smaller extent, in coolant.

e Once they become thermal, neutrons can induce new
fissions, keeping the chain-reaction going.
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CANDU Reactor - How 1t Works (cont.)

e Part of the neutrons get absorbed by radiative capture
or "leak" out of the reactor. These do not induce
fissions.

e On the average, only one neutron per each fission
succeeds In inducing a new fission, so there Is a
uniform rate of fissions and not an avalanche of
fissions.
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Neutron Diffusion and Moderation
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General Nomenclature
Consider a guantity, say the number of collisions N¢:

We call rate, the ratio between the amount of that quantity that is
found or produced between time t and time t+dt and dt. (i.e. the
collision rate is the ratio between the number of collisions that
occur between t and t+dt divided by dt):

R — dI\Icoll

coll dt
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We call (energy) spectrum the ratio between the amount of that
quantity that is found or produced between energy E and E+dE and
dE (i.e. the collision spectrum is the ratio between the number of

collisions suffered by neutrons with energies between E and E+de
and dE ):

choII

NcoII(E) — dE

We call the normalized spectrum the ratio between the spectrum
and Iit's integral over energy.

N_..(E N_.(E
|\lnormalized (E)= - CO”( ) = (|:\O|“( )

I |\lcoll (E)dE

coll
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We call (volumetric) density, the ratio between the total quantity
existing or produced in volume dV and dV (i.e. the collision

density is the ratio between the number of collisions suffered by
neutrons in volume dV and dV )

dN

N _ coll

coll dV
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We can have names that imply double ratios, e.qg.

Collision density spectrum. - the ratio between the number of

collisions suffered by neutrons in dV with energies between E and
E+dE and dVdE

dN
Nean (E) — CVdé

Also called energy-dependent collision density or collision density
per unit energy.
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Collision density rate:

dN

r(t) = coll
© dvdt

Oftentimes, when talking about double ratios people omit to name
one of them, so you must pay attention to the context.

For example, one will often refer to the collision rate or collision
density, when, in fact, meaning collision density rate, or even
collision density rate spectrum (same as energy-dependent
collision density rate)

The same letter is sometimes used to denote different quantities.

Always look at the context.
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Recapitulation of Basic Concepts

Volumetric total reaction (collision) rate density for
monoenergetic neutrons

or
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Reaction rate for neutrons with energies between E and
E+dE: Lt - F

-dF =X2(E)xn(E)dE x v(E) -

\_’_\/—’—\_/

(Total) Reaction rate for neutrons of all energies:

F = IME)V(E)CE = IZt (E)¢(E)dE

where
#(E) = n(E)V(E)
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Reaction Rates for Individual Reactions

Scattering reaction rate density:
F, = [, (E)$(E)dE
0

Absorption reaction rate density (number of neutrons
absorbed per cm”® per s):

F, = [, (E)(E)E
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Fick's Law (Diffusion Law)

o Will accept it without proof.
e Valid far from interfaces.
e VValid for materials with relatively low absorption.

Gives the neutron current as a function of the neutron flux

Assume monoenergetic neutrons
If the flux only varies along the x axis:

j, -
dx

D = Diffusion Coefficient
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In three dimensions (and monoenergetic neutrons):
J =-Dgradg =-DV¢
Definition of gradient: [ C,gh[cf/ah cooF o//»,a[u)

_@_
dx
of
dy
of

| dz |

Vi(x,y,2)=
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. . . A
Number of particles crossing a surface of orientation n per
unit time per unit area:

J =J-n
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Average of the cosine of the scattering angle

1 =Ccosé
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Neutron Balance Equation (equation of Continuity) for
Monoenergetic Neutrons

Expresses the conservation of neutrons

[Rate of change in neutron number in a small volume dV | =
— [Rate of neutron production in volume dV |-

— [Rate of neutron absorption in volume dV |-

[Rate of neutron leakage from dV ]
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v
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Infinitesimally small element means that:

e Whenever we integrate over its volume, we can
approximate the neutron density, neutron flux and neutron
current to be constant throughout the volume. JV

e Whenever we integrate over a face, we can assume the
neutron density, neutron flux and neutron current to be
constant over that face

e Whenever we integrate over an edge, we can assume the
neutron density, neutron flux and neutron current to be
constant along that edge
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We cannot make the same approximation when we take
differences of quantities (neutron density, flux, current) at
two points in the volume. That is because the difference is
already a very small number, comparable to the quantity's
variation from point to point.
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Number of neutrons in dV

ndV

Production rate
R =sdV
P
Absorption Rate

R =% _gdV
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Infinitesimal (i.e. very small) Volume

2005 E. Nichita



eakage Through Face BCC'B’

Af D'
Z

/ x
LK, =LK oop = 3(x+ dx, y+d—2y, Z +d—22\ -4 dydz
y
LK, , = LK goog = J, (x+dX, y, z)dydz

h
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eakage Through Face ADD'A'

/ X

LK, =LK, op = lj (x, y+d—2y, Z +%j.(—J (. )dydz

LK, =LK oo n =—J,(X, Y, z)dydz
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Net Leakage Along X Axis

LK, =LK, +LK, =LKy op + LK, o0, =
;@X(x+dx, y,z)-J.(x,Y, szydz

Let's remember that:

m(xyz EJx+dxyz xyzj
OX dx
L iy
Hence:
P (x+dx,y,z)-J,(x, y,zj :a‘]x(x, y, 2)dx
X X W
=
LK, =0 (x+dx,y,z)-J,(x,y,z)dydz =

&J

4 (x Yy, 2)dxdydz
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Total Leakage out of dV

LK =LK, +LK, +LK, =
8J

0J
4 (x y,z)dxdydz + — o L (X, Y, z)dxdydz+a—(x Yy, 2)dxdydz =

— X + 4+ —Z dxdvdz = (divJ dxdydz =1V - J kdxdvdz
( oX oYy Oz j y ( )d 4 ( )d Y

X,Y,Z

Definition of divergence for a vector function f(xy,2):

divf =V - Fz[at(+gfi+at°j

dx dy dz
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Rate of Change of Number of Neutrons in dV

_ #neutrons(t + dt)—#neutrons(t) n(t+dt)dV —n(t)dvV
change dt dt
n(t +dt) —n(t) on

= dV =—dxdydz
dt ot

R
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Neutron Balance Equation for B/ o/\/

% dxdydz = sdxdydz — = ®dxdydz — V - Jdxdydz

Dividing by the volume dV =dxdydz we obtain:

on -
—=S5S-2 ¢-V-J
p” X

Valid regardless of whether Fick's law holds true or not
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Neutron Balance in the Diffusion Approximation

Assume Fick's Law to be true:

J=-DV®
Substitute into the neutron balance eq:

on

E_—v-(— DV@)—X,p+S

This is the time-dependent diffusion equation for monoenergetic
neutrons.

It Is iImportant because by solving it we find the flux and the flux allows
us to calculate all reaction rates, including fission rate - which is really

what we are after, by using R=2¢.
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If the diffusion coefficient Is constant:

8n

— =DV (V§)-Z+s

Remember the definition of the Laplacian:

2 2 2
()0t ot o

Af(X,y,2)=V*f =V ax2+ay2+822
The diffusion eq. can then be rewritten:
on
—=DV*p-2.4+5

ot
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V() = 2y +—/(“ﬂc)7 p 2ot} -

_ (L
.-b 3 >+3(~3L>’\_ }—(—5
3 Ly N\ /T




If we keep in mind that

p=NV=n=

< [

We obtain:

1%zDv2¢—za¢+s
v ot

Steady-State Situation (no time dependence)

DV°¢p—-%. d+s=0
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Dividing by D:
2. S
Vip— 2+ — =
? D¢ D

Introducing notation (Diffusion Length):
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Interface Conditions for the Diffusion equation:

AlS
¢A — ¢B N
Ja =Jg. B I
Vacuum Interface
9
A N2 cvun.
¢(d)=0
\\\
d=0.714, —
N — !
d

d =2.13D
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The Concept of Infinite Homogeneous Medium
Medium is the same at any point

Hence, there is no reason why the flux would be different an any
particular point

d(x,y,2) =0 =ct

The current is given by Fick's Law

_62_
ox | [0]

3=Vq>=6£=0=0
2 0
| LV
| 0Z

The current is zero in an infinite homogeneous medium
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The Concept of Homogeneous Half Space

/|

Xe(—oo,oo)

ye(—oo,oo)
ze(a,o)

In such a configuration, since for the same z all points are identical, there
IS no variation in the flux with x or y

D(X,y,2) = D(z)
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N

Xe(—oo,oo

ye(—oo,oo)
ze(-a,a)

The Concept of Infinite Homogeneous Slab
bl
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Looking at it from one side:

yay
U

In such a configuration, since for the same z all points are identical, there
IS no variation in the flux with x or y

D(X,Y,2) = D(2)
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Differential Microscopic Scattering Cross Sections

Beam of monoenergetic neutrons

| =nv(E)

v

a ]
S
In/cn? /| \

R, =1lo,(E)
Equivalently, we can write (using only macroscopic quantities that can
be measured):

Scattering rate:

o (E) =~

S
| 2005 E. Nichita



By scattering, neutrons lose energy.

Let AR, (E’) be the rate at which neutrons are scattered in energy range
E', E'+dE'

We have:

| dR,(E") =R,
0
Definition of the differential scattering microscopic cross section

dR, (E’)

o (E—>FE")= HE

Equivalently, we can write:

IdE’ R, | R.dE’ R.dE’

S
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Scattering Kernel

dR,(E") _ dP(E,E')

k(E > E) =
R.dE’ dE’

o.(E - E)=ck(E - E)

The scattering kernel can be interpreted as the probability density
function for a neutron of energy E to be scattered such that its final
energy is between E' and E'+dE".

The differential and total scattering cross section satisfy:

o.(E) =TUS(E — E")dE’
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Differential Macroscopic Scattering Cross Sections
AN /
2. (E—>E)=No (E—E
or, using the scattering kernel:

> (E—E") =No.(E)K(E - E) =
=3 (E)K(E — E")

Volumetric reaction rate at which neutrons scatter within energy range
(E, E+dE)

R(E—>E")=I1X(E—>E')
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Energy-Dependent Neutron Balance Equation
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Balance Equation for Neutrons with Energy Between E and E+dE

[rate of change of number of neutrons in volume dV with energy
within range (E, E+dE)] =

[rate of production in volume dV of neutrons with energy within
range (E, E+dE)] +

[rate of scattering of neutrons in dV into energy range (E, E+dE)] -
[rate of absorption in dV of neutrons with energy in range (E,
E+dE)] -

-[rate of scattering of neutrons in dV outside of energy range (E,
E+dE)] -

[rate of leakage out of dV of neutrons with energy within range
(E, E+dE)]
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F

~ n(E,t+dt)dEdV —n(E,t)dEdV

I:\)change(E) dt
_ n(E,t+d;z—n(E,t) v = ) ey
h ( {"I'O/é) — (,J.’) - (:o ,/Wa/o/ o/QVI‘(/é/% Ve
T N\
TYYAR] Ldl] _ Leobdverd devivedive
v — JF

Ly m o/#‘» 0
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R, (E) = §(E)HEQV

s(E) = number of neutrons produced inside dV with energies between E
and E+dE, divided by dEdV.

2005 E. Nichita



Rate at which neutrons with energy within (E';E'+dE) scatter such that
their energy is within (E;E +dE)

R.(E'— E) = ®(E")dEXZ, (E'—> E)dEAV

Rate at which all neutrons scatter such that their energy is
within (E; E +dE)

R.(— E) = ch(E')xzs(E'—> E)dE' |[dEdV
0
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—

R.(E) = ®(E)dE xX_(E)dV = ®(E)x X (E)dEdV
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—

R.(E —) = ®(E)dE xZ_(E)dV = ®(E)x =, (E)dEAV

Note that:

> (E) = TZS(E 5 E")dE’
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—

LK (E)=V-J(E)dEdV
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Balance Equation for Neutrons with Energy Between E and E+dE

(E)=R,(E)+R,(— E)-R,(E)-R, (E =) - LK (E)

change

on(E)
ot

~®(E)xZ, (E)dEAV —®(E)x X, (E)dEAV -V - J(E)dEdV

dEdV = s(E)dEdV + _[(D(E')XZS(E'—> E)dE’ [dEdV —
0

Dividing by dEdV we obtain the energy-dependent neutron balance
eguation (continuity equation):

on(E)
ot

~D(E)xX,(E)-D(E)x 2, (E)-V-J(E)

- s(E)+TCD(E')><ZS(E'—> E)dE' -

2005 E. Nichita



We can show the dependence on time explicitly:

on(E,1)
ot

~®(E,t)xX, (E)-D(E,t)xZ, (E)-V-J(E 1)

:S(E,t)+TCD(E',t)><ZS(E'—> E)dE' -

Definition of energy-dependent flux:

®(E) = n(E)V(E) = n(E) = %

Substituting the expression for the energy-dependent neutron density, we
obtain:

1 od(E,t)
v(E) ot

~D(E,t)xX, (E)-D(E,t)xZ (E)-V-J(E,1)

:S(E,t)+TCD(E',t)><ZS(E'—> E)dE' -

2005 E. Nichita



Energy-Dependent Steady-State Neutron Balance Equation

0= S(E,;)+j®(E',t)xES(E'—> E)dE' -
0
~D(Ext)x 2, (E) - D(Et)xZ (E)- V- J(Est)
Diffusion Approximation (use Fick's Law)

J(E) =D(E)V®(E)

0= s(E,\)+T®(E',Dx23(E'—> F)dE' -

~®(EY)xZ,(E)-D(EY)xZ,(E)+V-(D(E)VO(E))
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For position-independent diffusion coefficient:

0= S(E,t)+TCD(E',t\)><ZS(E'—> E)dE'—

—®(E,1)xZ, (E)-D(E,})xZ, (E)+ D(E)V’®(E)
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Multigroup Formalism

Approximate treatment of the energy-dependent diffusion equation.
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Energy Groups

Divide the energy domain (0. E..) into intervals called groups

Group neutron density

Eqs
n, = j n(E)dE
E

g
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(Energy) Group Flux

Eqs
D, = j ®(E)dE
Eg

q)(E)A

TN

Eq = E
Can depend on parameters such as position and/or time

D, (F) = Tcp(r, E)dE

g 2005 E. Nichita



Group Current

Group Source

E,s
Sy = js(E)dE
Eg
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Group Reaction Rates

Reaction Rate for a single Nucleus

Eqgs

R(E)dE = gjch(E)a(E)dE

g g

Rsingle nucleus __
g

B E
Reaction Rate Density for a Material

R, = ETR(E)dE - ET(D(E)Z(E)dE

Eg g9

Can depend on parameters such as position and/or time

R, (F) = TR(r, E)dE = Tcp(r, E)S(F, E)dE

g g
2005 E. Nichita



Group Cross Sections

Microscopic Group Cross Sections

i&)(E)G(E)dE single nucleus \/WJ(M_‘
E, RggI e R[a/ B épgg—g/

%o T T o, |
j ®(E)dE ’
E

9

Macroscopic Group Cross Sections

j'ch(E)Z(E)dE

E

2y = :qFjg M?:%i?

g Eq
j ®(E)dE ‘

=
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Inter-Group Scattering (Transfer) Cross Sections

Microscopic
Eq1| Ega W,c(ﬁo
| { [®(E)o,(E > E’)dE}dE I o 5!
Oy = — — -
j ®(E)dE C\Pj,

9

Macroscopic

EQJT?&)(E)ZS(E BN E’)dE}dE

g L 9
X g =

g—9g

Egjlcp(E)dE

g




Microscopic

Macroscopic

Intra-Group Scattering Cross Section

/___\ﬁ\/ ( N S
Es/ E}‘I
E]‘l |:E]‘1(I)(E) (E Er)dE,:|dE MVJQ/)
—>
S Ls—g
TCD(E)dE %
Zg—>g — e — ) :
[@(E)dE &,
) &yl%’@

@~%~%:
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Multigroup Neutron balance Equation

[rate of change of number of neutrons in volume dV with energy
within group g] =

[rate of production in volume dV of neutrons with energy within
group g] +

[rate of scattering of neutrons in dV into energy group g] -

[rate of absorption in dV of neutrons with energy in group g] -
-[rate of scattering of neutrons in dV outside of energy group g] -
[rate of leakage out of dV of neutrons with energy within group g]
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Multigroup Neutron balance Equation

0 G G _
o NgdV =s,dV + Y 28,0V -2 gdV— Y E  gdV-V-JdV

9'=1,0"#g 9'=1,0"#9

Dividing by dV we obtain:

—_

0
an =S¢t Zzsg—xq Py —2agPy — Zzsg—w — V- Jg

@m
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Multigroup Neutron balance Equation
Multigroup Fick's Law:

Jy =-DyVo,
Multigroup Diffusion Equation

0
Ny =S, + Zzsg%g by — %oy — Zzsg%m +v-(D,V4,)

9'=1,9#9 9=1,9*#9

For constant diffusion coefficient'

o
an =S, + Zzsw¢ ~ 2oy — Zzsg%m +D,V?¢,

9'=19*#9 9=19*#9
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Steady-state (no time dependence)

S, + Zzsg%g by — 2oy, — Zzswgﬁ +D,V?¢, =0

9'=L,9'#9 9'=L9'#9

Finally, changing the order of the terms, we can write:

_D V ¢ — Zzsg—>9¢ +2ag¢ T ZZSQ—)Q - 9

9'=1,9'#g 9'=1,0'#9
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A Different Way of Deriving the Multigroup Diffusion Equation

Integrating the energy-dependent diffusion equation over energy

group g.

0
8’{ Ny =5 +Zzsg—>g _zag¢g _zsg¢g +V'(ng¢g)

For constant diffusion coefﬁuent.
0 G 5
5”9 =Sy F Z‘Izsg‘—w%' _zag¢g _zsg¢g T ng ¢g
g':

Steady-state (no time dependence)

G

Sq +Zzsg'ﬁg¢g' _zag¢g _zsg¢g T D9V2¢9 =0

9=l
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The above can be rearranged to:
, G
N ng ¢g B Z;ng'—ﬂ;%' +2ag¢g _zsg¢g = Sg
g':

This appears to be different from the diffusion equation we established
before. We will prove that it is, in fact, identical.
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Scattering cross sections satisfy:

Substituting the above into the steady-state multigroup diffusion

equation, one obtains: ™
’}i

G Teonh Y G i%@/ﬂ &3/
2
- ng ¢g _Z‘Izsg'—w%' +Za9¢g +Z‘izsg—>g'¢g = S
g'= g'=

Which, considering that the intragroup scattering cancels out, can be
rewritten:

— Dy V74, - ZZSQ—AJ¢ Loy Zzsg—w Py =S,

0'=1,9'#¢ 9'=1,9'%gQ
Which is exactly what we had obtained before using directly a group-
balance argument. 2005 E. Nichita



Additionally, iIf we assume no upscattering, we can write:

Yo, =0 for g'<g

and thus process the multigroup diffusion equation to:

_D V ¢ Zzsg—>9¢ +zag¢ T ZZSQ%Q - 9

g'=g+1

2005 E. Nichita



Particular Cases of the Diffusion Equation
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- -
6 = Ed E"’
One-Group Diffusion Equation

The entire energy range is included in just one group

The multigroup diffusion equation

_D V ¢ Zzsg—>Q¢ +Zag¢ T Zzsg%g - 9

=g+1
VZ

We can drop the group index:
~DV?p+2.d=s5
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G="T

Two-Group Diffusion Equation

Start with the multigroup diffusion equation

_D V ¢ Zzsg—>9¢ +zag¢ T Zzsgag

g'=g+1

Group 1 (fast):
- D1V2¢1 T Lah + 2o =S
Group 2 (slow, thermal):
- D2V2¢2 — 2 0P +200, =S,

Two-group diffusion equations:
- D1V2¢1 +L P T2 0 =S

— D2V2¢2 _zsl—>2¢1 + za2¢2 =3,

9
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Solving the Diffusion Equation for Simple Cases
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One Group, Infinite Homogeneous Medium, Uniformly
Distributed Source

~DV?@(F)+Z 4(F) =5
Infinite, homogeneous medium
p(r)=¢=ct
Vip=0
The equation becomes:

2.0=S
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Solving for the flux, we obtain:
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Two Groups, Infinite Homogeneous Medium, Uniformly
Distributed Source

— D1V2¢1 + Za1¢1 + 231—>2¢1 =35
- D2V2¢2 _2s1—>2¢1 + Za2¢2 =3,

For an infinite and homogeneous medium with uniformly-
distributed source:

¢1(F) = ¢1 = Ct
¢2(F) = ¢2 = Ct
Vg =0

Vg, =0
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The two-group equations become:

zal¢1 T 2sl—>2¢1 =35
— Z31—>2¢1 + Zaz¢2 =3,

The first equation can be easily solved to yield:

_ Sl Sl
R D

s1l—>2 r

&

2. = removalcrosssection
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The second equation can be rewritten as:

Zaz¢2 =3, + Zsl—>2¢1

2 ,® =0, =slowing down density

Using the expression found for the fast flux, we have:

S
512
Z r

Za2¢2 =3, +2
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The thermal flux Is hence:

S

1
S2 + ZSl—>2 3
r

9, =

2a2

If there 1s no external thermal source(s, =0), then the solution
simplifies to:

S

s1->2
Z rzaz

¢, =%
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One Group Diffusion for an Infinite Planar Source
Situated in an Infinite Homogeneous Medium

0,

S (n/cm?/s @

Equivalent to two half-spaces (left and right)

~DV®d(X,y,2) +Z,.4(X,y,2) =0 forx=0
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Because of the symmetry, ¢ =4¢(x)

The equation becomes:

%) i B
D 00" > (X)=0 [

Using the diffusion length notation:

3 1 ¢ 0, x=#0
X
6\/% _ Pé/\f ‘a//akf g@/\/j/f(?\‘\
Yl;fyﬂ /\/ w — /0
[//L gvzox(/v\g\(\c 4
v l\\/,’”H 0 = oh 2005 E. Nichita



\Fm"—L —5 - —\;L * C—Qh@(/?/) 53{(/4’103 x
L L) he = +CE"

This is a homogeneous second order linear differential

equation with constant coefficients. The general solution Is

of the type: /
‘ |

B(X) = Ae__LX +}z§ef

Because the flux needs to be finite, we have C=0. Hence:

H(x) = Ae /L

-
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The current Is:

J(X) = —D%(Ae%) — A%e%

To find A, we use the boundary condition:

lim J(x):%

X—>+0
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The initial condition yields:

J(x):AEe% > :>AB: > :>A:i
L L 2 2D
The flux for x>0 1Is hence:
SL -/
=—8ge L
4 2D

Analogously, the flux for x<0 is:

SL x,
= —8e L
¢ 2D

2005 E. Nichita



One Group Diffusion for a Point Source Situated in an
Infinite Homogeneous Medium

Use spherical coordinates with the source placed at the center

d®r=dV =r’drsin@de

Q

1l
= | =

4

A

Z

dA=r?sin@&le =r?dQ
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Because the problem is symmetrical with respect to both &
and ¢ (spherical symmetry) , the flux will only depend on'r.

¢ =o¢(r)

Expression of Laplacian in spherical coordinates for a
function with spherical symmetry, f(r).

sz(r)zii(rzﬁj

redrl  dr
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The diffusion equation becomes:

This is a homogeneous second order differential equation
with constant coefficients.

The boundary condition is @ 5
. G
. , S lim 0] N
IlmHo(r J(r)):— \9 o
A kk \(“://{'
41

> &
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To solve the equation, we make the substitution:

W=r¢<:>¢:¥

The equation becomes:

redr| dr\r/] L
which yields:
2
d\gv_ 12W=O
are L v
__/L 0 —

L,
N A€ %\f/\e/ 2005 E. Nichita



Following a similar treatment as for the plane source, we find:

W »
d€~7 ¢_S e%_
4D v

\/\0\4/ \/w/lmp\\‘g/ajr)v@ W)@C///t/h:: \/)7 gm;'@_))r

M\/)L\'()}(Qa%ve/ M(’/o///m — [48,3 gﬂj)‘/ﬂﬁ
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One Group Diffusion for a Bare Slab with an Infinite
Planar Source Situated in the Middle

S (n/cm?/s

v

The problem Is symmetric with respect to the source and also

has planar symmetry
¢ = P(X)
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Diffusion equation:

d’¢ 1
dx* L°

p=0, x=#0

Will treat the right half.

This i1s a homogeneous second order linear differential
equation with constant coefficients. The general solution is
of the type:

$(x) = Aelt +Cet
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The left boundary condition is, just as before:

: S
Ilmx—>+0 ‘](X):E
yielding:
J(X)Z—BAGT—I—ECGI :—BA+BC:§
L L |, L L 2
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The right boundary condition is now a vacuum boundary
condition, that Is the flux vanishes at the extrapolated

boundary.

S (n/cm?/s

(a+d)

g(@)=0
where
a=a+d

ard) X

v
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The above yields:

~

$#(3) = Aet +Ce

a
L

0

We obtain A and C by solving the system:
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The final solution is:

X—2a

SL e*{L—e L
X) = i
#(X) 2D =

\ 1+e
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Neutron Moderation (two group treatment) /
A (Yo g —(’Zs‘(’ ?,!Sa V,')J//pb [ \’)‘32///7/!{

Two-group diffusion

- D1V2¢1 T Z:sl—>2¢1 — /)\/\
_ D2V2¢2 — zsl—>2¢1 + Za2¢2 =0

The two equations can be rearranged to:
~ D1V2¢1 + 2 0f = g’k

~D,V8, + 2008, =Xy o
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We make the following notations:

D,

=7, =age

zsl—>2 ngwy |

s 2 = |2 =thermal diffusion area
az2

L. =thermal diffusion lenght
With the new notations, the equations are written:

1 \
(4}

1 D
Vit =g
2 L-2|- 2 DZTT 1

These can be solved for different configurations. For point
source the solution is given in the textbook.
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Nuclear Reactor Theory
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Preliminaries - Neutron Fluence

Neutron fluence is defined as the time integral of the flux
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Fission Chain Reaction
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Each fission produces 2-3 more neutrons which can, in
principle, induce new fissions in avalanche. This Is not
desirable.

However, not all neutrons resulting from fission induce new
fissions. Some undergo gamma capture.

If two few neutrons (less than one per fission) induce new
fissions the fission reaction dies down. Not desirable either.

The trick i1s to have a fission rate that Is constant in time. A

reactor operating at a constant fission rate Is said to be
critical.
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Infinite Homogeneous Reactor
(One-Group Diffusion Approximation)

The steady-state diffusion equation is written:
~-DV°¢+Z.4=S

The source now consists of fission neutrons:
S=12,¢

So the equation becomes:
~DV’¢+2.p=VZ ¢

2005 E. Nichita



The flux i1s constant in space because the medium is infinite
and homogeneous, so the equation becomes.

Za¢ — VZ f ¢
It 1S obvious that the above cannot be satisfied, unless

2, =VX,

a

If that Is not the case, then the source is artificially divided by
a factor Kk, just to balance the equation.

za¢:%VZf¢
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k 1s called the multiplication constant (factor). For an infinite
medium, it Is called the infinite multiplication constant and

denoted by k...

It Is obvious that, for the one-group homogeneous reactor
case:

It is also obvious that the value of the flux cannot be
determined because once the appropriate k Is used, any value
of the flux will satisfy the balance equation.

1 1
Za¢_k_vzf¢z>za¢_ V) V2@

o0

2

a
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Interpretation of k

Since the balance equation is written:

2a¢:ivzf¢
K.
We have:
(= V@
N

So k can be interpreted as the ratio of the neutron production
rate and the neutron loss rate.
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The name "multiplication factor" is used because k represents
the ratio between the neutron density for one generation of
neutrons, divided by the neutron density for the previous
generation. This needs some explaining.

Consider a bare infinite homogeneous reactor. Initially there
are no neutrons present.

Now, assume some neutrons, with density ng are introduced
In the reactor. Let's call these "generation 0" neutrons. These
neutrons will fly around, producing a flux ¢/(t) =n,(t)v which

will decrease as the neutrons are absorbed, until all neutrons
are eventually absorbed.

2005 E. Nichita



The time dependence of the zero-generation neutrons looks
something like this:
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The flux, has a similar shape

A
.

pa—

et Ly
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As these zero-generation neutrons are absorbed, some of them
produce fissions. We consider the neutrons born out of these

fissions first generation neutrons. They are produced at a
rate:

VZ ¢y (1)

and are absorbed at a rate

241
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Overall, the number of first-generation neutrons that are
produced per unit volume i |s J Lo of Clritgen ne vhosg

be of

0

n, = [VE g ()dt =12 j¢o(t)dt—v2fwo

0

The total number of absorptions of first-generation neutrons
IS:

o0

[z a)dt=3 j 4 (t)dt =

0
Y)XQ 0 ),gf

V] &r /\\x C] (%
\,\(,\/\(\Q‘-\s
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Since, in the end, all first-generation neutrons get absorbed,
we have:

z“agyl = szWO
which yields:
V2 ¢
W, = z—‘//o =K. v,

a

The first-generation neutrons, In turn, produce second
generation neutrons. Theilr number is:

n2 — szl)”l — Vkaool)”O — koonl
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The process continues:

-
w
|l

k.n,

and so on.

The number of neutrons in each generation is equal to the

number In the previous generation multiplied by k.. Hence
the name multiplication factor.
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Infinite Homogeneous Reactor
(Two-Group Diffusion Approximation)

Diffusion equations:

- D1V2¢1 +2 00t g P = VRO VL0,
- D2V2¢2 — zs1—>2¢1 + Zaz¢2 =0

Because the reactor Is infinite and the flux (both fast and
thermal) Is constant in space, we have:

LaP t L P = VRGP HVE L0,
2 00 + 2,0, =0
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Attempt to solve the system:
Group 2 equation yields:

)

s1—>2 ¢
1

z“a2

9, =
Substituting into the group 1 equation, we obtain: 4\9

LBt 0 =VEL9 AV,
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Obviously, the above is only satisfied if:

2
_ s1-52
=VZ H VR, —

s1-52
Z“a2

2t

which may not always be the case. This means that unless the
above Is satisfied, we cannot have a steady-state solution to
our diffusion equations.

To force the system of equations to have a (steady-state)

solution, we resort to the same trick as before: use a "fudge
factor" 1/k that multiplies fission productions.
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Thus, our equations become:

1
St +Za ot =02 uh HE o6,)

o0

— 2s1—>2¢1 + 2az¢2 =0

¢ _ Z:sl—>2 ¢
= - 2 - 1 -
And, by substituting @mto the fast-group
eguation, we obtain:
1 Z:sl—>2
2P+ 2 o0 = K VE i V2, 5 9,
az2
— 4 —_ r)-: T:;/l 2L
T&JI\ '*'1/%'1/\&?[ — ,,[Z \')L_(,/\.{_, V £y, — 1
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Dividing by the flux, we obtain:

1 >
> o+Y = V3. xS
al k [ f1l f2 Zaz j

sl»>2

o0

. ces o e
We can now solve for k., . /U\

2

s1—>2

VX HVZ,

k — 2a2
N INE)

Y
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Choosing k., to have the above value ensures the system

¢2:Z

512 ¢
1.

admits a solution. That solution isgy

We cannot find the fast flux explicitly.
A close look at the system of equations

1
2 2y 0 = k_(VZ P+ V2, 2¢2) éPT

o QPV

— 231—>2¢1 + Z:az¢2 =0

reveals that it iIs a homogeneous system of linear equations
which defines an eigenvalue/eigenvector problem. The

eigenvalue is 1/k,, and, as expected, the eigenvector can only
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be determined up to a multiplicative constant which, in our
solution, is ¢.
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K, can, in the two-group case be interpreted in three different
ways:

1. the eigenvalue that allows the system of equations to have

a solution

2. the ratio of productions over losses

3. the factor by which the number of neutrons gets multiplied
from one generation to the next

2005 E. Nichita



Criticality

K<1 - Subcritical
e Number of neutrons decreases form one generation to the next
e Rate of neutron production smaller than rate of neutron loss

K=1 - Critical
e Number of neutrons stays constant form one generation to the
next
e Rate of neutron production equals rate of neutron loss

K>1 - Supercritical

e Number of neutrons increases form one generation to the next
e Rate of neutron production larger than rate of neutron loss
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The Four-Factor Formula

Let us look at the group 1 equation in the two-group
approximation.

1
2P tEg 0= k_(VZ (@ V2 2¢2)

o0

Solving for the multiplication factor, we obtain:

K — V2 +VE L0,
) Za1¢1 + Zsl—>2¢1
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The above can be processed as follows:

_ VZ@ +V2ofy  VE TV P, Vi,

) Zaf T2 0 2Pt Zg 0 V2,0,
_ V21 + V24,0, V2t 0,

VY (20, 2ty 0

K

By making the notation:

VX VI, 0,
V2 (29,

E
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We obtain:

" V2,0
o0 — g
Za1¢1 T 2sl—>2¢1

We can continue the processing:

k =¢ sz2¢2 Zaz¢2 s Za2¢2 sz2¢2
) 2a1¢1 +231—>2¢1 2a2¢2 \Z_ﬁ?%¢l Za2¢2
Denoting: I
p _ 2a2¢2

) al¢1 +2 Sl—>2¢1
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We have:

V2t o,
Za2¢2

K, =éep

We can, moreover divide the thermal absorption cross section
Into the absorption cross section for fuel, and the one for
moderator.

v fuel moderator
Z612 o Za2 T Z612

With this, we can rewrite the formula for the multiplication
factor as follows:
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iy Tty Zash VE it

ue =& ue
Soby T Zath T,
Lo

K, =ép

Denoting:
1: — Z;u;|¢2
z:a2¢2
and
_ V2 ¢ o9,
S0
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We obtain:

K, = &ptn

This 1s known as the four factor formula.
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The names and interpretation of the factors are as follows:
Ll Fisor T8 (oot s/

Fast fission factor /\_/\
VX +VE L0,

E =

V2 0P, J(he/v\w{ b2y V.ZLLG/

_Resonance escape probability _Therw

ol zé;py\/ﬂ[«'[/"\ V«’/j‘c

i >
£ £ £ & ~ g Vﬁ"\d\/a/ Va/lc
" Thermal utilization factor Lo WlfZ o boel

e -~ Aésor
(gt~ Ho

Za2¢2 X\m [/A'/@

L\/<TO\1/\ LS 0y

f:
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n (number of neutrons produced per neutron absorbed Inf
'5“ rofe o £ veo troq rree” /”5
V2f2¢2

x4, L ok o liovphon 1 ;Vf,/x

>\/),
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One-Group Treatment of Finite Reactors
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Diffusion Equation

Dv2¢—za¢+%v,zf¢=o

v2¢+%(—za+%vzfj¢:o

Notation:
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Equation can be rewritten:
V¢p+B°¢=0

B depends on k. It turns out that B cannot take just any value.
It has to be equal to the value imposed by the geometry,
called the geometrical buckling.

2 2
B? = B
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Then:

Things will become clearer by showing an example.
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b

Infinite Slab Reactor

1
.

Loy
VY \ .
— —

1
S——

-(a/2§+cl) R C a0k

where
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We then have:

ﬁ+ B’¢p=0

dx
e\r%

Boundary conditions: > "+ e L
(Lpgtze =2V ok

a —-a
w
Symmetry of problem implies:

2
dX x=0
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General Solution:

#(X) = Acos Bx + Csin Bx

do(x)]  _ [ AW + CB cos Bx|
dX x=0 AT\/

=CB=0=C=0

X=0O

Hence:

#(X) = Acos Bx
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Vacuum B.C.

Implies:

Yields:

a Ba)
¢(Ej = Acos(7j =0
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Fundamental solution /@%ﬁ)
T
@<
1

¢(X) = AcosB,x = Acos(@j
~ a

B, is the geometrical buckling B, B = v

leo

A cannot be determined from the diffusion equation. It can
be determined from the condition on the reactor power.

%
P=E.Z; [(x)dx

el
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P =

2aE. X Asin(

5 A

2005 E. Nichita



Spherical Reactor

We have, In sequence:

sin Br Cos Br

¢=A +C
r r
Because the flux has to be finite at rzé), we have:
Sin Br

¢:A ; Kyl
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P=EZ [¢(r)dV

p ()

PSR
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Infinite Cylinder

lm Olvl‘CZ’ coako((m cs$

We have in sequence: g1} 10 ¢]
N
1d rd¢

- +B%%=0
r dr dr ¢

2
d?+ld_¢+82¢zo
dr r dr
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Solution: Bessel functions of first and second kind

= AJy(Br) + 9@(( -
q,\/ @S
Y, infinite at origin (fig. 6.3) f

= AJ, (Br) L G

f/ \
BC \/3@(/(/‘/\« \ j

H(R) = Ay (Br) =0
\a® i o
%@:%ﬂ? = N‘l
2 %3(\//

((\L/ ﬂ/ 2005 E. Nichita
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B.C.

Finite Cylinder

d?: d?(‘/ﬁ’)

2 2
d?+16¢+a?+82¢:0 !
or° ror oz T

/_\4} v, +)
#(R,2) =0 1

H
¢(r,?) =0
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_B2 ﬁ>MI
Rrar or (- SamTe €710

16°Z2

__BZ N =
Z o1 %
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Solution:

\Q/ “1 | gﬂ"lk 1 glv/
(/(‘“\ | i
%
AN
H(r ):AJO(MgSer;?
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Reactor Kinetics
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Time-Dependent Phenomena

e Short Time Phenomena (ms, S)
— accidents
— experiments
— startup
 Medium Time Phenomena (hrs, days)

— fission product poisoning
. Xe
e SM

 Long Time Phenomena (months, years)
— fuel burnup with consequent change in composition
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Time-Dependent Phenomena

* No feedback (approximation)

— Changes In flux level do not induce changes
In the absorption or production properties of
the reactor.

e Feedback

— Changes In flux level do induce changes In
the absorption or production properties of the
reactor.
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Point Kinetics Equations

part 1

all neutrons emitted In a fission
are assumed prompt
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One-energy-group diffusion equation

e time-dependent diffusion (results from
neutron balance)

on(r,t)
ot
 If sources are exactly equal to sinks, then

the static equation results (no time
dependence)

0=1Z,®(F) + DV’D(F) - Z,®(F) < -DV’D(F) + =, ®(F) =vZ , O(F)

=V, O(F,t) + DV°D(F,t) - =, (T, 1)
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One-energy-group diffusion
eguation

* To keep the static form of the diffusion
equation even when the sources do not
exactly equal the sinks, we introduced K,
(multiplication factor) to artificially adjust
the sources.

0 =%vzfc1>(r) +DV?®D(F) - X, ®(F) & -DV°D(F) + =, D(F) =%vzfc1>(r)
 Now, we will not use k any more, but
rather concentrate on the time-dependent
equation
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Time-dependent one-energy-group
diffusion equation

a”g;’t) — V3 O(F,t) + DV2D(F,t) - =, O(F, 1)
(| —~— | —7
’ . E:O focf
e Butlet’'s remember: ‘ 90
_ ()
(D - nV = n :T
V
* SO:
on 100

ot Vv ot
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Time-dependence of the neutron
flux and neutron density

* \We can now write the time-dependent
diffusion: in two separate ways

— concentrate on the flux

1 60(F, 1)

T =X ®(F,t) + DV°D(F,1) - X, O(F, 1)
V

— concentrate on the neutron density
on(r,t)

. VX Vn(F,t) + DVUn(F,t) - Z_vn(F,t)

2005 E.Nichita



Some assumptions

e Static one-energy-group diffusion equation
for a critical reactor
—~DV?®D(F) + 2, D(F) =1Z , D(T)
It can be rewritten as:
V O(F)+B°D(F) =0
 Where

Vif =2, 02
5 T
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Some assumptions

 Assume that the equation satisfied by the
time-independent flux in a critical reactor Is
also satisfied, at any time t, by the time-
dependent flux in a non-critical reactor.

VO(F)+B°d(F) =0
V O(F,t)+B°d(F,t) =0 = z_ch(rf) = —B>%c1>(r,;)J

e This is equivalent to assuming that the
spatial shape of the flux does not change

with time CP(FDI {'5 = oy @ :



Back to the time-dependence of the
neutron flux and neutron density

* \We can now write the time-dependent
diffusion

_ for the flux = 5P
1OBWLY _ 5 a(r,t)— DB2D(F 1) — X, d(F 1)
vV ot

— for the neutron density
on(r,t)

=X Vn(F,t) - DB*Vn(F,t) -, Vn(F,t)

ot
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Time-dependence of the neutron

density
on(r,t) N an(F,t): ,
~ _(vzfv DBV Zav)n(r,t)<:> ~ on(r,1)
 where

o =(v2f — DB? —za)v
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Time-dependence of the neutron
density Jr=d4V

on(r,t)
ot
 Integrating over the entire reactor we
obtain:

jﬁn(r’t) d°r = [an(r,t)d°F
V at V

d N [ LLZ’@ ree &
— =d| n(r, t)d°r
& o0 -of e

2005 E.Nichita
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Time-dependence of the total
neutron population

e Total neutron population

S W) 4V

n(t) = j n(F,1)d%F =
V \/

« Equation governing the time behaviour of
the total neutron population
4

%n(t)=an(t)® n(t) = en(t) F = g

e solution
n(t) =n,e”
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Time dependence of the neutron
flux

oD (¥, 1)

e VX O(F,t) - DB°®(F,t) -, D(F,t)

aq)g’t) ~ (=, —DB? - %, o (F 1) @\@Cpg’t) — a0 (F 1)

* The results are analogous to those for the
neutron density.
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Time dependence of the neutron
flux

 Integrating over the volume of the reactor:

[ aq)(r Y gor = [aw(r,nd°r

\%
ij O(7,1)d°F = [ (7, t)d°F
V \

~ A ~ > (// 14'0%
aqﬁ(t) ~ag) = g0 =ap) | LI emr P

e where: /
§(t) = [@(r H)d°r C? [4) = hit) -V

2005 E.Nichita



Observations

* The total neutron population and the
volume integrated flux obey the same
equation.

* The relation between the volume
Integrated flux and the total neutron
population is the same as that between
the flux and neutron density.

O(r,t) =n(F, 1)V

[o(r,0)d°r =v[n(F,t)d°F < g(t) = n(t)v
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Point Kinetics Equation without
Delayed Neutrons

« Just a special way of arranging the
coefficients.

« Usually written for the neutron population,
but similar equation can be written for the
volume-integrated flux.
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400 M’ﬂlhﬁf@ L")@c//u/.,
K Ly fvarte ectin

Point Kinetics Equation without
Delayed Neutrons

. i 12
Keft = f
e Multiplication constant ke T
" ] /z FoO=2y&>1 =) ?vperm%cz/
° ReaCtiVity ,0=—= —— \ P=o = 4=y => Cr/'é/cz/
K K NP L] =) k< = Nborrdey/
e We can write:
vy —DBZ—Q
=X, -DB?-% VOV al _
( f a)v /Vif
VX 2
V2V + _DB"+2, =v2 . V| 1- . =2 Vp
U Y L,Vﬁj

j) 2005 E.Nichita



Point Kinetics Equation without

Delayed Neutrons
1

/A

e Notation: A=

e |t follows that:
o=—
A

 The equation for the neutron population can
then be written

dn(t) _P n(t) ch = Point kinetics eq. w/o dn
~

at A
Sor\l\f.\o\“ W, e
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Point Kinetics Equation without
Delayed Neutrons

e A similar equation can be written for the
volume-integrated flux.

dg(t) _ p

dt A ()

 Alternative processing:

—~DB*-%
az(vZ —DBZ—Za)V:(DBZ+Za)VVZf a _
f « — 4 %

0B+ 2 W iy~ o | (087 4=, -
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Point Kinetics Equation without
Delayed Neutrons

 New notation
. k-1
/=
(DB2+3, v
o With the new notation the point kinetics

eq. can be written (a less common form):
dn(t) k-1

t
dt / ()
e and, for the flux:

dg(t) k-1-
&7 #(t)
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Point kinetics equation(s)

 Nomenclature — called point-kinetics
because the reactor is reduced to a point —
no accounting for spatial or energy
dependence.

e Can be derived starting from a more
general, space and energy dependent,
flux.
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Names and interpretations of

SymbOIS \W( l/)é‘/‘l?\”*\ fﬁ’aJ}Zl;WS
 Neutron generation time n !
n N
1 AT
A = = = VLS. VZ/
VS \%\?i—(‘ & kgobJ\ 76’)("/V‘&Lm

 Interpretations

[ — Average time between two neutron births in
successive generations

— Time it would take to generate the current number of
neutrons at the current generation rate.

L— Average “age” of neutrons in the reactor. (Note that
this is a time, and not the Fermi age).
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Names and interpretations of

J«Lﬁ? Y
symbols =l
* Neutron life time I
. . ~ \N - = N
BRSSO M w
o 1 1 “-0
 For an infinite reactor: /.= v, :

 Interpretations

— average time between the birth and death of a
neutron

— Time necessary to lose all the neutrons in the
reactor at the current loss rate.

— Average life expectancy for neutrons in the
reactor.
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¥ (Tt L)

F:‘-
dnz - ( W S 11 v -I’o cJ/\/:->&A/
=4
I
T_ = _L.-" //\—/‘/ = L
M T T S vof)
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Point Kinetics Equations

part 2
Accounting for Delayed Neutrons
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Point Kinetics with Only One
Delayed Neutron Group

We make the same assumptions about the
buckling staying constant as in the case with no
delayed neutrons.

We write directly the equation for the entire
reactor (volume-integrated quantities)

Some neutrons are emitted directly from fission

Some neutrons come from the decay of
precursors.
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Neutron Balance Equation for the
Entire Reactor

BRI
« Sources i J ;
— Prompt neutrons from fission VT

.vz O(F)d°r =v,3 jcp(r)d?’r v,2ip=V—vy)Zd=v(l- B¢

— Delayed neutrons from the decay of
Drecursors

AC (é = total number of precursors in the reactor)

2005 E.Nichita



Neutron Balance Equation for the
Entire Reactor

e Sinks
— Absorption

[z, o(r)d’r =3, [o@)d°r =3 ¢
V \

— Leakage

jDBZq>(r)d3r = Dezjcp(r)d ’F = DB?%¢
V V

2005 E.Nichita



Precursor Balance Equation for the
Entire Reactor

e Source

[veZ @) =v,x, [O(F)AT =v,Z g =V 4
Vv

\Y

e Sink
AC
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Neutron and Precursor balance
Equations

 Neutron Balance
dn(t)
dt
 Precursor Balance

dC(t .
dt()=vdzf¢—zc:(t)

* \We now have a system of two (coupled)
differential equations.

=v, % -2, DB%$+AC
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Point Kinetics Equations with One
Group of Delayed Neutrons

 Rearrange the first equation in a few steps

dn(t)
dt

dn(t) =VX;
dt VY

o, [Ern 08 px]d
it —VVZ{@ 5 }V+ZC
G/ 2 n R
0O _gx, {1—@—4%1 ¢
’ L,
\ 1

-\ - ? 2005 E.Nichita
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Point Kinetics Equations with One
Group of Delayed Neutrons

 Rearrange the second equation

dC(t)

" =v,2 . ¢—AC(t) = VF

dC(t)
dt

9CO_ pis, 2260
dt V

=vps (- AC(t)
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Point Kinetics Equations with One
Group of Delayed Neutrons

e Make the same notations and
observations as for the case with no

delayed neutrons
AL

vV )
A1) = N(H)V < n(t) = @
— sz
"%, + DB’

>. +DB?
K VX,

K
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Point Kinetics Equations with One
Group of Delayed Neutrons

* Neutron Balance Equation

an() =V {1— Z, + DB’ —-p }é AC

dt MJ )

[l (LA
N P %
in®) _P=8 hty+ 26
at A

e Precursor Balance Equation

dC(t) f@ 2600
Ty
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Point Kinetics Equations with One
Group of Delayed Neutrons

* Final form of kinetics equations using the
neutron population

0O _pByeze o ek Loome
t

— 5 d)},@ oJ I s 42/25/6,

dC(t) B .\ A
i —An(t) AC(t)
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Point Kinetics Equations with One
Group of Delayed Neutrons

 Final form of the point kinetics equations
using the volume-integrated flux

&(t) =n(t)v< n(t) = @

dg(t) _P=P; de(t) _P=P; 1 A
~ X ¢(t)+V/1C & ~ X gb(t)+AV2 AC
dé(t) dC(t)

— 1= BT $(t) - AC(t)

Bl
2 4(t) - AC(t) = -

dt AV
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Point Kinetics Equations with Six
Groups of Delayed Neutrons

e Equations using the neutron population
(7 coupled differential equations)

dn(t) _p-p S A L 2 VK
— = nit)+ » 4C
UL AN Es
dcC, (t)

,Bk N
= nt)-A4,C,(t), k=1...6
it A (t)-4,C, (1)
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Point Kinetics Equations with Six
Groups of Delayed Neutrons

e Equations using the volume-integrated flux
(7 coupled differential equations)

dt dt AVE 3
d‘i;t“) A g - 46,0 9O _ 505 4148, 0

dt
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Inhour Equation

Start with the point kinetics equations

dn(t) o-p S
= nt)+ » A4,C
o A (t) kz; C

dék (t) _ P 1~ _
o =2in() - A4C, (1), k=1.6

This is a system of seven coupled differential equations with
constant coefficients.
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Solutions of the form
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Substituting the above form we obtain:

_ 6
=L E 0+ 3 A% Chanecderickic spsten
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Substituting into the neutron population equation we obtain:

32
Mm

a)+/1)

which, after division by n and multiplication by A, becomes:

: P io
AP (0+4,) .[._:”\LW'E v

k=1

Solving formally for £, we obtain:
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We can solve graphically for @ by plotting the RHS and
Intersecting it with a horizontal line at y=p.

WS ¢

. | ‘ rt‘J
Reactor Perioo W M
T-1 s
i b Omx wAJC
bk o wd e s b 7

: C;}/,\ T C . S C 1 N, C 2005 Enichita



Perturbation Theory



Perturbation Theory

e Consider a reactor with the following
parameters (This is called the “reference’,
or “unperturbed” reactor):

D, (F)

2 40(T)
VE (o (T)

e K can be calculated by solving:

- Dy (V204 (F) + 2, (PP (F) = 2 ()0, (1)

0
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Perturbation Theory

« Consider now a different reactor, with the
same shape, but different absorption and
fission cross sections (This is called the
“perturbed” reactor).

Za(F):ZaO (F)_i_éza(r)
2 (F)=2Z(F)+ 02 (F)
« K can be calculated by folving:
~ D, V?®(F) + X, D(F) :EVZ L O(F)
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Perturbation Theory

e Assuming that

6%, (F)| is small

O ; (F)‘ Is small

« we can find k by a simple formula, without
having to solve the diffusion equation
again

* NOTE:

— 0X, is called the perturbation in the
absorption cross section

— ox, Is called the perturbation in the fission
Cross section

2005 E.Nichita



Perturbation Theory

e Perturbation Formula for finding k (no proof):

[ o2, (M®3(F)dV - kl [vos (F)®} (F)dv

vV

112

1 1
k K
° j Ve, (F)D2(F)dV

Vv

 The formula is good even if the reactor Is not
homogeneous.
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Perturbation Theory

e Q: What does “small’ mean for a
perturbation?

* AL o, (Ml << [£,(Nav

j o2 (F)|dV << j >, (F)dV

e A perturbation can be small in two ways:
- a) ‘éza(r)‘ <<ZaO (r)
5 (F)] << 2 4o(F)

—b) The perturbation only affects a small part
of the reactor.
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Reactivity Induced by a

\ h) 112

Perturbation in a Critical Reactor

o Reactor initially critical k, =1
 Introduce a perturbation

 The new k can be found using the
perturbation formula: . Jer® | chet®

PN e
o, 1 I
[ox, (M@ (F)dV -~ [vox  (F)®} (F)dV
1 13 K, 3
K Kk,
BN [v2 5 (M@ (F)aV

/L Vv
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Reactivity Induced by a
Perturbation in a Critical Reactor
e Since k,=1
e \We can write:

. j 6% (F)DZ(F)dV — j VvoT , (F)D2(F)dV

— 1=

K

[VZ (o (M@ (F)dV

. j VoL, (F)D2(F)dV — j 5% (F)DZ(F)dV
le_E v V

112

j VE o (F)D2(F)dV

\Y
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Reactivity Induced by a
Perturbation in a Critical Reactor

e Remember the definition of the static
reactivity:

1

-
P=27)

 Hence, we can write the perturbation
formula for the reactivity:

j VoL, (F)D2(F)dV — j 5% (F)D2(F)dV

V

|12

o,
[VZ (o (D@3 (F)dv

\% -
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Generalized Definition of Reactivity

Diffusion equation

~D,V’D(F) +X,D(F) = %vz Nol(g

It represents the neutron balance

L osses = % Productions

So k can be interpreted as the ratio
Productions/Losses . _ Productions
Losses
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Generalized Definition of Reactivity

e Reactivity
1 1 Productions — Losses
k Productions Productions
Losses

 The generalized definition can be also
applied to non-static (time-dependent)
situations
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Steps for Setting up the (Quasi-)Exact Point Kinetics Equations
(Case of One Energy Group)

1. Find out the neutronic parameters (diffusion coefficient and macroscopic cross
sections) of the critical (unperturbed) reactor.

2. Determine the flux P for the critical (unperturbed) reactor (Usually by solving the
diffusion equation or referring to the results from a previous calculation).

3. Calculate the point kinetics parameters (except reactivity) using their formulas of
definition (shown below).

A =— L
Vv,
:dezf
‘ VX
1
0 =— >
v(z, + DB?)
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4. Calculate the reactivity using the perturbation formula:

j SVE , (F)D2(F)dV — j 5%, (F)D2(F)dV

112

Yo,
j VE o (F)D2(F)dV

\Y

5. Write the point-kinetics equations:

dgf) P ﬂ n(t)+z/1C (t)
dzt(t) P nity - ch (t)

6. Solve the point-kinetics equations.
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Measuring the Reactivity Worth of a Control Rod by the Source
Multiplication Method

e The method is applicable for a subcritical reactor with an external neutron
source.

e \We need to have a second rod whose reactivity worth we already know.
Steps

1. Measure the flux at any reactor position without any of the rods inserted and
record the value.

2. Insert the rod of known reactivity worth Ap;.

3. Measure the flux at the same reactor position as in step 1 and record the
value.

4. Remove the rod of known reactivity.

5. Insert the rod of unknown reactivity Ap,.

6. Measure the flux at the same reactor position as in step 1 and record the
value.

7. Calculate the unknown reactivity worth Ap, .
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Calculations C =Y S{wu@

For any point in a subcritical reactor with an external neutron source we have:

A

D, =——S
Jo,

det ector

Note: we have shown that this is true for the flux at the center of the reactor and
we will accept without proof that it is true for the flux at any position in the
reactor.

For the reactor without any control rod we can write:

A —
(I)getector =——3 (1)

Lo

or
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1 __ 5
\" (Dget ector A po (2)

After we insert the rod of known reactivity, the reactiv\ity becomes
/

J

l@ N2 /
p=p ) ®
L> Hojv 4 howy
The flux equation becomes

1 S
\\-) P = _X(po T Apl) (4)

det ector

2005 E.Nichita



Dividing equation (4) by equation (2) we obtain:

CI)getector — pO +A,01
OF o (5)

det ector

We can now solve for £Po

Pitecior 4 (6)
(Dl

det ector

Lo

After we remove the rod of known worth and insert the rod of unknown worth,
we have: \l

L s i -

= _X(Po + Apz) (7)

(DZ

det ector

Dividing now equation (7) by equation (2) we obtain
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(Dgetector — /00 +A,O2
2
q)detector 100 (8)

We can now solve for A0, in (8)

— (D((j)et ector
Ap, = py ((Dz B lj (9)

det ector

And substituting the expression for Ao that we found in equation (6) we obtain:

(DO

det ector -1
(DOe ector CDZ ctor
Apz — po[q)czit t _1} — A,Ol (Dgete to
det ector det ector _1 (10)
1
‘ (Ddetector
khw W N
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So the formula for finding the reactivity worth for our rod is:
®O

detector
D L
det ector

0
zcljet ector -1 (11)

det ector

Ap, = Ap,
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Example

A subcritical cylindrical reactor has radius 3m and height 6m. A flux detector is
placed at r=1m in the midplane of the reactor, and a neutron source of unknown
strength is placed in a position diametrically opposed to the detector. The
detector reads initially 1000 units. A control rod worth 1 mk is then inserted
Into the reactor and the detector reading drops to 500 units. The rod is then
removed and another rod of unknown worth is inserted. The detector now reads
250 units. What is the reactivity worth of the new rod?

Answer

Applying eq. (11) we have:

Dotecior 4 1000 ,
d? 250 4-1 3
Ap, = A det ector = 0.001x = 0.001x =0.001x—=0.003
& P (Dgetector -1 @ -1 2-1 1
OF 500

det ector
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Measuring the Reactivity Worth of a Control Rod by the Null Reactivity
Method

Method 1 Steps

1. Insert a calibrated rod fully (up to the maximum depth, d.)into the reactor.
(A calibrated rod is a rod for which we know what the reactivity worth is as

a function of the depth of insertion 22 (d) )
2. Make the reactor critical by modifying other parameters, possibly extracting

some poison.
3. Insert the rod to be measured
4. Make the reactor critical again by partially extracting the calibrated rod, up

to depth d.
5. Calculate the reactivity worth of the second rod, Apy.

Calculations

Consider the reactor with the calibrated control rod extracted, but with all other
parameters having the same value as when the calibrated rod was inserted.
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Its reactivity would be Po (unknown)

After the insertion of the calibrated rod, we know that the reactivity is zero.
1

/Oc :pO+A/Oc(dmax):O \ U

After we insert the second rod and withdraw partlall the callbrated rod, the
reactor is still critical.

Px =Py +Ap.(dy)+Ap, =0 Ty U(

Subtracting these two equations we obtain:

Aloc(dx)_A/Oc(dmax)_i_A/Ox =0
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We can now solve for APy

A/Ox — AIOC (dmax)_Apc (dx)
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Example

The reactivity worth of a calibrated control rod as a function of its depth of
Insertion is given in the graph below. The reactor is made critical with the
calibrated rod fully inserted. A second control rod is inserted, and the reactor is
again made critical by withdrawing the calibrated control rod up to a depth of

1.5 m. What is the reactivity worth Apy of the second control rod?
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Solution

Consider the reactor with the calibrated control rod extracted, but with all other
parameters having the same value as when the calibrated rod was inserted.

Its reactivity would be Ao (unknown)
After the insertion of the calibrated rod, we know that the reactivity is zero.
pc — /00 +A10c (Boocm) — O

After we insert the second rod and withdraw partially the calibrated rod, the
reactor is still critical.

Px = Po +Ap(150cm) + Ap, =0

2005 E.Nichita



Subtracting these two equations we obtain:

Ap.(150cm) —Ap,(300cm) +Ap, =0

We can now solve for APy

Ap, = Ap,(300cm) —Ap, (150cm)

Substituting the numerical values, we have:

Ap, =-10—(=5) = —5mk
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Method 2 Steps

1. Obtain the reactivity calibration of a liquid poison (e.g. B) as a function of

its concentration A2 poison (X)

2. Add some poison while maintaining the reactor critical (possibly by
removing some other reactivity devices).

3. Mark the poison concentration Xc.

4. Insert the rod to be measured.

5. Make the reactor critical again by removing some poison.

6. mark the new poison concentration.

7. Calculate the reactivity worth of the second rod, Apy.

Calculations

The poison reactivity worth is proportional to the poison concentration:

AIOpoison (X ) = aX

2005 E.Nichita



Knowing the reactivity calibration of poison means knowing & , which is
usually measured in mk/ppm.

Consider the reactor in step 2 but without any poison. Its reactivity would be
Po (unknown)

Now consider the (critical) reactor at step 2.

IOc — 100 + A/Opoison(xc) — O

After we insert the rod and remove part of the poison the reactor is still critical.
Px = Po + AP gison (X) +Ap, =0

Subtracting these two equations we obtain:

AL sison (X) - AP oison (X,)+Ap, =0
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We can now solve for the reactivity worth of the rod.

Apx = AIOpoison(Xc)_AIOpoison(X) = OK(XC o X)
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Example

The reactivity worth of Boron in a CANDU reactor is 7mk/ppm. The reactor is
made critical by the addition of Boron. A control rod is then inserted and the
reactor is maintained critical by removing 1.5 ppm of Boron. What is the
reactivity worth of the rod?

Solution

By applying the formula we derived, we have:

Ap, = a(X, - X)=7x(-1.5)=-10.5(mk)
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Appendix: Elements of Relativity

Introduction

Consider two Cartesian frames of reference, S and S’, and assume S’ is moving with respect to S with a velocity u, directed along the
X axis, and oriented in the positive direction of the axis. Also assume that each frame of reference is provided with its own clock.

The two clocks are of identical make, and they are set so that the origin of time (t=0) in both frames of reference coincides with the
moment when the origin of S and that of S’ coincide.

AY AY
u
—
S S’
X X’
z 7’
Figure 1

Consider now an event (say an electric bulb being turned on) that happens in S at position (X,y,z) and time t. We want to determine
the coordinates (x’, y’, z’) of that event in frame S’, as well as the time t’ indicated by the clock in S’ when the said event happens.
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So we are concerned with the following transformation:
(x,y,z,t) > (X', y,z,t")
Galileo’s transformation formulas
Our initial “common sense” tendency would be to say that t=t’. That is to say that, if the clocks are of identical make, and since both

were set to start when the origins of S and S’ coincided, they will continue to show the same time forever. If we assume this to be
true, then we have the situation depicted in Figure 2.

A

S

~
'><:"""

\ 4

\

\

Figure 2
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We can then easily infer:

t'=t
y'= y (because u is along x)
z'= z (because u is along x)

x'=x—ut

These are known as Galileo’s transformation formulas. They include a very profound assumption: that time transforms independently
of space. In other words, if we have two events happening in S at the same time ¢ and different positions (x,,y,,z,) and (x,,»,,z,),

both of them will happen at time #'=¢1in S’, at different coordinates,
(x{ ,» ,z ) and (X, ,y),z, ), given by:

,_
V=N
4 J—
Z =z
-

X =Xx —ut
and

'—

Vo=

l J—

Z, =4

r— p—
X, =X, —ut
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If we accept Galileo’s formulas, we can easily write a formula for transforming velocities. All we have to keep in mind is that:

_@_
dt
v, &
v=lv, = o

vz
dz
| dt |

And that:

[ dx’
dt’
, v% dy’
PRI T e

VZ
dz'
L dt’

With that in mind, we can begin to write the components of the velocity in S’.

For the x direction, we obtain:

=(vx—u)><1=vx—u

,odx' dxX'dt d dt dx dt
vV, =——=—" =—(x—uz‘)—= ——u
dt' dt dtf dt dt’ dt dr'
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For the y direction, we follow the same steps, but the result is even simpler:

, dy' dy'dt  dy dt dt
y =——=———=—"——=y =V, :
Toodt drdd dedd Tdi 7 g

And similarly for the z component.

, dz'_dz'ﬂ_dzﬂ_ dt

=y xl=v

V. = =— =— =y
odt dtdt! dtdd  Cdff C :

We can now write the formula for the velocity in S’ as:

<L
Il
< <

'~ <~
<

<
<

N
N

This is the expected, “common sense”, result.

The trouble with the above velocity-addition formula is that it has been shown by experiment to fail for velocities close to the speed of
light in vacuum. Michelson and Morley performed a famous experiment that showed that if v=c (¢ = speed of light in vacuum), then
the classical formula for adding velocities fails.

In Michelson and Morley’s experiment, the moving frame of reference was taken to be the Earth, which was known to move around
the Sun at a speed of approximately 30 Km/s. The “fixed” frame of reference was taken to be the “ether”, an all-encompassing “fluid”
that was presumed to fill all space and constitute the medium through which light propagates. If the classical law of velocity addition
was true, then the speed of light measured in the direction of the Earth’s motion (chosen as the x axis) would have had to be c-u, while
the speed of light in a direction perpendicular to the Earth’s velocity would have had to remain equal to c. Michelson and Morley’s
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experiment showed that, in fact, the speed of light in vacuum was the same in both directions (parallel, as well as perpendicular to the
Earth’s motion). There were two immediate implications of this experiment, and they resonated in the scientific world:

1. There exists no “ether” as the medium through which light propagates.
2. The classical law of velocity addition does not apply for velocities close to the speed of light.

Albert Einstein then devised the Theory of Relativity by postulating what was now obvious from Michelson and Morley’s experiment:

The speed of light in vacuum is the same, and equal to ¢ =3x10%m/s, in any inertial frame of reference. Additionally, Einstein
postulated that the laws of physics are the same in any inertial frame of reference. The two hypotheses are known as the Postulates of
the theory of relativity:

1. The laws of physics are the same in all inertial reference frames.
2. The speed of light in a vacuum has the same value, c=3x10® m/s in all inertial reference frames (independent of the observer’s
motion).

If the above two principles are applied consistently, then alternative transformation relations are obtained for the coordinates of an
event E, when moving from inertial frame S to a second inertial frame S’. (Remember that two inertial frames of reference have to
move uniformly (i.e. constant velocity) relative to each other.) These are known as the Lorentz transformations, because they were
first formulated by Lorenz (before Einstein came up with the theory of relativity) in the context of the electromagnetic theory of light.
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The Lorenz Transformations

In trying to come up with the transformations that will satisfy the two postulates of relativity, we will look for as simple
transformations as we can. The ultimate test of their validity will have to be experiment. And so far experiments have proven the
Lorenz transformation to be right.

We will hence make two simplifying assumptions:

1. The transformation of y and z coordinates (the ones perpendicular to the motion) transform the same way as in the classical
approach, that is y’=y, and z’=z.
2. The transformation of x and t are linear, that is of the form:

'_
X =a x+apt

'—
U'=a,x+ayt

We can already note an important difference between the proposed transformations and those of Galileo: The value of t” is not
independent of position any more. That is, if two events happen at the same time t in S, but at different positions x; and x; , they will
happen at different times t’; and t’; in S’. So two events that are simultaneous in one frame of reference, may or may not be
simultaneous in the other frame of reference. This is a major difference from our classical understanding of how the world works.
But let us try to determine the coefficients of the transformation. To do that, we will imagine a “thought experiment.

Let us first consider a light detector placed at coordinates (0,d,0) in the “stationary” frame S. At time ¢ =¢" =0, the exact time when

the origins of the two frames of reference coincide, a bulb is lit at the common origin, for a fraction of a second. The light then
propagates to the detector. Let us consider the two events:

1. The emission of the light pulse

2. The arrival of the light pulse at the detector.

We will now try to write the coordinates of each event, including time, in both frames of reference, using Figure 3 as a guide for
emission, and Figure 4 as a guide for reception.
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Figure 3
For the emission, according to Figure 3:
InS
x=0
y=0
z=0
t=0
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InS’:

N e X
L | TR
© o o o

For the reception we use Figure 4.:

><¢ \ 4

Figure 4

2005 E. Nichita



InS

x=0
y=d
z=0
d
t=—
c
In S’:
x'=—ut'
y':y:d
z'=0
t'="?

To determine t’, we need to consider the fact that the speed of light (in a vacuum) needs to be perceived to be the same in both frames
of reference. In S, the distance traveled by the lightis d . In S’, the distance traveled by the light is:

4+ (ut')
Since the speed of light is the same in both frames of reference, it means that:

In S:

ct=d
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InS’
ct'=+d* + (uz")2
Substituting the first of the two relations in the second, we obtain:
ct' =+/(ct) +(ut'y
which yields subsequently:
(ct') =(ct) +(ut'y
then:

(ct')" = (') =(et)

2,2 2

2 2,2
ct

ut'c=ct

(cz —uz)t'z _ o2
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Now, considering our transformation equations for the experiment we have just described, we have:

’_ —_—
X' =a;, x0+a,t=a,t

t'=a,, x0+a,t=a,t

It then follows from the second equation that:

We now consider the first transformation equation, and the fact that x" = —uz", which follows directly from the fact that just as S’
moves with u with respect to S, so S moves with —u with respect to S’. We also keep in mind the relation we just established between

tant t’. We then substitute the expression for t” in the first transformation equation and equal it to x' = —uz':

: , 1
X =apt=—-ut =—U——=1I1

It follows immediately that:
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We have thus found two of the four coefficients we were after.

Now, consider the movement of the origin of S, as viewed from S. Since it moves with velocity u, its position at time t is
X =ut

At the same time, its coordinate in its own frame of reference S’, is always zero x'=0.

Applying the transformation formula for x, we obtain for the origin of S’:

—_— ’_
O0=x"=a,x+a,t

0=aqa,ut+a,t

a
12
a, =
u
) ) 1
Given that we have already determined a,, to be a,, = —u——=, we can now find a;; as:
uZ
==
c
1
—u
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So:

There is now only one more coefficient left to determine: ay;. To find it, we consider a pulse of light that is emitted from the common
origin at t=t’=0, along the x axis, in the positive direction, and consider its position in both frames of reference at time t.

In S:

In S’:

We now substitute the known coefficients of the transformation from S to S’, that is:

o 1 u

=) )

t'=a,x+——t
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So now we can write:

We can now solve for ay;.

) c 1 u
a,c + — = - c— -
c c c
a21c2 “ -
c
u 1
a, = _0_2
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We now write the complete Lorentz transformations:

z =z
: . . 1 . . .
Oftentimes, the Lorentz transformations are rearranged by factoring out ————and rearranging the time equation, to:
2
u
1=
c
, 1 u
= t——zx
2 c
u
==
C
1
x'= (x —ut)
u 2
==
c
Z'=z
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There are a couple of notations that are usually employed:
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Relativistic effects on time and distance

Time dilation

Consider two events , E; and E,, that occur at times t; and t, respectively, in S, in the same place (x,y,z). (Such a time interval
measured between events occurring at the same place is called proper time). Then, their corresponding times in S* will be:

1-—
o>
v 1 , _u
2 1 u2 2 6‘2
o>

The time elapsed in S is Af =¢, —¢,, while the time elapsed, as measured in S’ is:
;(12 _%xj_;[tl _izxj :;(l‘z _tl):;At
u’ ¢ u’ ¢ u’ u’
1—— 1—— 1—— 1-—
c c c c

So, in S’ the time interval appears longer. This means that the proper time (measured in a frame of reference where events occur in
the same place) is always the shortest.

At'=t, -t =
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Length contraction
The length of an object measured in a frame of reference where the object is at rest is called proper length.

Consider a spaceship moving with speed u from planet A to planet B, separated by distance L. Consider the two events: the departure,
and the arrival. In the ship’s frame of reference, the two occur in the same place, so the time of travel in the ship’s frame of reference
is the proper time of travel, and equals Az. On the other hand, the proper length L is measured in a frame of reference where the
planets A and B are at rest. Such a frame of reference moves with —u with respect to the ship. The time of travel measured in this
frame of reference will be At' = yAt. So, for the planets’ frame of reference we can write:

L=uyAt
And for the ship’s frame of reference we can write:
L, =ult
It follows by dividing the two equations, that:
1
Lship = ;L

As y >1, this means that the length in the ship’s frame of reference is contracted compared to the proper length.
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Relativistic momentum and mass

The classical definition of the momentum of a particle is:

where my is the mass of the particle.

If the principles of relativity are applied rigorously, it turns out that mv is not conserved. It turns out (we will not give the proof) that
the quantity that is conserved is

This is the relativistic expression for the momentum of a particle.

[P 4]

We can interpret the above as still being the product between “a” mass m and velocity v provided we define the mass of a moving
particle as:

Where m is called the relativistic mass, and my is called the rest mass, and corresponds to the mass of the particle as measured in a
frame of reference where the particle is at rest.
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The relativistic relation between momentum and force is the same as the classical one:

p_dp
dt

= dv e .
However, F # m; because the relativistic mass is not a constant.
t

Relativistic energy
Consider a particle moving on a straight line from x=a to x=b, under the influence of a force F, and assume the particle is initially at

rest. Just like in classical mechanics, the kinetic energy imparted to a particle starting from rest equals the work of the force acting on
it:

KE = dex jdpd jdpdx _b[d—pvdt jdpdv dt_jdpvdv

° dt dt dt ° dt ° dv dt dv
Substituting the expression for the relativistic momentum, we obtain:
b b
KE = Id—pvdv = J-i ;mov vdv
dv dv V2
1—
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The above needs some processing, which we do below:

b
KE J‘i(mov) ! +i ! myv vdv =

° | dv y:oodv V2
l—c—2 l—c—2
f 1 11 2y
Imo +| = T |[mev pdv =
a v 2 2\; €
c pe

v | vdv

Q — >
3

<)

—
S}
W w
1
VR
f—

|
m|<
) )
N
+
VR
N | —
Q|N
N <
N S
I
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Further processing yields:

The above can be rewritten more elegantly as:

Where m is the relativistic mass, and my is the rest mass. The term m,c” is called the rest energy.

Rearranging the terms, we can write:

2 2
KE =mc” —m,c

KE +myc® = mc’

The term mc” is therefore the sum between the rest energy and the kinetic energy and is called total energy and denoted by E. We can

therefore write:
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which is the famous relativistic energy formula that shows the equivalence between mass and energy.

The interpretation of the equivalence between mass and energy is that we should, on one hand, be able to create energy from matter,
and, on the other hand, be able to create matter from energy. Both situations have been found to occur in reality. In particular, the
total energy can be liberated in reactions of annihilation, where a particle and an antiparticle collide, the most common such reaction
being that between an electron and a positron. A positron is a particle with mass equal to that of an electron, but with positive charge.
The reverse reaction is called pair production. When a photon (a particle of light) with sufficient energy is decelerated very fast
(usually by collision with a heavy particle), an electron-positron pair can be created.
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