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i Objective

= How are data & assumptions chosen?

= How do we ensure that the answer is
pessimistic?
= Is this good?

= Details specific to CANDU —
methodology is general

= ' Think Negatively”!
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Selection of Events by
Phenomena - 1

Reactivity Accidents
. Bulk Loss of Reactivity Control
. Loss of Reactivity Control from Distorted Flux $ea
. Inadvertent Criticality
2.  Decrease of Reactor Coolant Flow
. Loss of Class IV Power
. Partial Loss of Class IV Power
. Single Pump Trip or Seizure
3. Increase of Reactor Coolant Pressure
. Loss of Primary Pressure and Inventory Control¢ase)

4.  Decrease of Reactor Coolant Inventory
. Large Heat Transport System LOCA
. Small Heat Transport System LOCA

. Single Channel Events

. Single Steam Generator Tube Rupture

. Multiple Steam Generator Tube Rupture
. Loss of Primary Pressure and Inventory Controlréhese
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Selection of Events by

i Phenomena - 2

Increase of Secondary Side Presslt

Loss of Secondary Side Pressure Control (increase)

6. Loss of Secondary Side Heat Removal

Main Steam Line Break

Feedwater Line Break

Loss of Feedwater Pumps

Spurious Closure of Feedwater Valves

Loss of Secondary Side Pressure Control (decrease)
Loss of Shutdown Heat Sink

7.  Moderator & Shield Cooling SystemFailures

Pipe Break
Loss of Forced Circulation
Loss of Heat Removal

8.  FuelHandling Accidents

Fueling Machine On-Reactor
Fueling Machine Off-Reactor
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Accident Analysis Flow Chart

Physics
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i Models - 1

= Reactor physics
= Transient 3D

= System thermohydraulics

= Transient 2- or 3-fluid, 1D, non-equilibrium,
network

s Fuel thermo-mechanical

= Initial - strain, fuel-to-sheath heat transfer
coefficient, fission gas release, temperatures

= Transient - fuel sheath strain, beryllium braze
penetration, sheath embrittlement, athermal

strain, and excessive fuel energy content
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i Acceptance Criteria

= Public dose as per siting guide or C-6 or RD-
337

= Designers choose secondary targets

= Shutdown is special:
= Fach shutdown system must be independently
effective

= /wo diverse trips on each system for each
accident for operating plants
= RD-337 drops this requirement for direct trips
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Axial Segment (node)

Bundle Elements

11/17/2009 6:28 PM

Vapor ™

Thermohydraulic Model

Non-equilibrium model
= 2-velocities,

= 2-temperatures

= 2-pressures

= plus noncondensables

Flow regime dependent
constitutive relations
couple two-phase
model

Interfaces to other

codes:
= Fuel Behaviour
= Plant Control
= Physics
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Typical HTS Nodalization
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fL Fuel Failure Mechanisms

* N0 excessive straining- 5% strain less than 1000°C

* no-oxide cracking- 2% strain greater than 1000°C

e @==8 °no beryllium-braze penetration
* no oxygen embrittlement

* no fuel melting
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i Models - 2

s Pressure-tube thermo-mechanical

= Moderator temperature & flow
= 3D, steady state & transient

= Fission product transport
=« Within HTS; at break; within containment

= Containment thermohydraulics
=« 1D & 3D multi-fluid transient

= Atmospheric dispersion and dose
= Gaussian plume; ICRP-60
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Moderator Flow - ACR

11/17/2009 6:28 PM Rev. 8 vgs

15



11/17/2009 6:28 PM

Moderator
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Initial Conditions - 1

Parameter

Reactor thermal power

Reactor regulating system

HTS

11/17/2009 6:28 PM

Radionuclide operating load in the Highest permissible =~ Maximize radionuclide

Lecture 9 - Accident Analysis.ppt

Conservative Rationale
Direction
High Minimize time to use

up cooling water

inventory, minimize
margins to critical heat
flux, etc.

Normal operation orChoose so as to delay
inactive, whichever is reactor trip
worse; setback is
generaly not credited
unless it tends to
“blind” the trip

operating iodine release from station
burden (and associatecand public dose
noble gases) and end-

of-life tritum

concentration

Rev. 8 vgs
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Initial Conditions - 2

team generators

Steam generator tube leak rate

Pressure tube creep

HTS flow

HTS Instrumented channel flow

11/17/2009 6:28 PM

Clean & fouled caseReduce reactor trip
effectiveness

Maximum permittedncrease radioactivity
during operation, plus release
assessment of any
consequential effects
due to the accident

Largest value expectedduce margins to
critical heat flux and

increase void
reactivity

Low Reduce margins to
critical heat flux

High Reduce low flow trip
effectiveness

Lecture 9 - Accident Analysis.ppt
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Coolant void reactivity coefficient

Fuel loading

Shutdown system

SDS2 injection nozzles

High;

Low

Equilibrium;

Fresh

Backup trip on less
effective shutdown
system using the last
of three
instrumentation
channels to trip

M vkl st fedteister aarde le Reduce shutdown

unavailable

Initial Conditions - 3

Maximize overpower
transient;

Delay HTS high
pressure trip

Maximize fuel
temperatures,
radioactivity releases;

Maximize overpower
transient

Delay shutdown
system effectiveness

system reactivity deptl

Lecture 9 - Accident Analysis.ppt

11/17/2009 6:28 PM

Rev. 8 vgs
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Initial Conditions - 4

SDS1 shutoff rods Two most effectve  Reduce shutdown
rods unavaiable system reactivity ‘bite’
and depth
Maximum channel/oundle power  High Maximize fuel &

sheath temperature

Reactor decay power High Minimize time to use
up cooling water
inventory

Initial flux tilt High Maximize fuel &

sheath temperature

Moderator initial local maximum  Low Minimize margn to
subcooling critical heat flux on
calandria tube

Lecture 9 - Accident Analysis.ppt
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Initial Conditions - 5

Number of operating containment Low; Maximize containment
air coolers and other heat sinks pressure;
High Delay high pressure

trip and maximize
likelihood of hydrogen
combustion

Number of containment dousing Low (typicaly 4 ot Maximize short-term
spray headers of 6); containment pressure

High Maximize long-term
containment pressure
and leak-rate,
maximize likelihood of
long-term hydrogen
combustion

Containment leak rate High (typically 2xto Maximize public dose;
10x design leak rate);

Low Maximize containmen{
pressure

Lecture 9 - Accident Analysis.ppt
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ntainment bypass leakage

Weather

Operator Actions

Initial Conditions - 6

Pre-existing steam Maximize public dose
generator tube leak

Least dispersive Maximize public dose
weather occurring
>10% of the time

Not credited before 1&nsure adequate time
minutes after a clear for diagnosis
indication of the event,
for actions that can be
done fromthe control
room; and not credited
before 30 minutes, for
actions that must be
done ‘in the field”

Lecture 9 - Accident Analysis.ppt
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Rev. 8 vgs
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:_h Large LOCA — Initiating Event

= Instantaneous break up to 2X area of
largest pipe

= Large pipes all above core

= RIH, ROH, PSH

Lecture 9 - Accident Analysis.ppt
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Break Locations

Steam Generators

: "'_:_'_ ! T
1) Pump Suction ;\_’f\... et o

2) Inlet Header Feeders

3) Outlet Header

Reactor/Fuel Channels

Lecture 9 - Accident Analysis.ppt
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i Sequence of Events - 1

= Large break occurs discharging steam to
containment

= Coolant voids, reactivity increases
= Reactor power increases
= Reactor is shutdown on a neutronic trip

= HTS flow decreases fastest in the core pass
downstream of the break

= Power pulse & fuel dryout result in an
increase in fuel temperature

Lecture 9 - Accident Analysis.ppt
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i But for ACR...

= On large LOCA, gross reactivity initially
increases due to “checkerboard voiding”, then
decreases slowly

= Power increases, then decreases slowly

= Reactor trips on process parameter e.qg. low
flow

= Fuel temperature increases due to loss of
heat removal and redistribution of stored
heat

Lecture 9 - Accident Analysis.ppt
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i Sequence of Events - 2

= HTS pressure reduces to the ECC activation
setpoint & ECC is activated; two loops (where
relevant) are isolated, crash cool-down

= Containment pressure rises, building isolates,
dousing sprays turn pressure over

= Some fuel fails, fission products released to
containment, some small leakage

= Loops refill, fuel temperature falls
= Long-term ECC recirculation

Lecture 9 - Accident Analysis.ppt
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:L Time Scale of Large LOCA

Pressure (MPa(a))

IHD2 (PASS 1)intact Loop
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4.0- \\ HT pump trip
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i Safety Aspects

= Jet forces & pipe whip

= Flow decrease downstream of break
= Power increase & neutronic trip

= Fuel heatup and sheath strain

= Pressure-tube heatup, strain to contact with
calandria tube

= Heat transfer to moderator
= Containment pressure increase
= Leakage of radioisotopes

Lecture 9 - Accident Analysis.ppt
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Stagnation Break

Coolant Flow at Center of Downstream Core Pass (RIH
200
100
'C\U; 0 ‘ /f;-l_ - m
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i Iodine Transport

l,(ad) \

l,(9) <> Rl(g)

I, 1,-, HOI, 10,~ «— | l,(aq) «— Ri(aq)
'\ 2

l,4(ad)
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i Acceptance Criteria - 1

= Dose to the most exposed individual in the critical
group is below relevant limit
= Class 3 for C-6, single failure for siting guide, DBA for RD-
337
= Pipe whip is limited so that:

= no impairment of either of the shutdown systems below
their minimal allowable performance standards

= no break induced in the piping of the other HTS loop
= no shearing off of large numbers of feeder pipes

= nho damage to the containment boundary

= ho break induced in ECC piping

Lecture 9 - Accident Analysis.ppt
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i Acceptance Criteria - 2

= Channel geometry must remain coolable

= amount of fuel sheath oxidation must not
embrittle the sheaths on rewet

=« amount of sheath strain must be limited so that
coolant can flow through the channel.
= Channel integrity is maintained.
= no fuel melting
= Nno sheath melting
= Nno constrained axial expansion of the fuel string

Lecture 9 - Accident Analysis.ppt
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i Acceptance Criteria - 3

= If the pressure tube strains or sags

= the pressure tube does not fail prior to contacting
the calandria tube (¢ < 100%)

« the calandria tube remains intact after pressure
tube contact (no prolonged film boiling)

= Pressure within containment is below design
ressure.

= Pressure within containment compartments
does not cause internal structural failures.

Lecture 9 - Accident Analysis.ppt
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:_h Three Classification Schemes

= Siting guide
= Single process failure

= Dual failure (process system failure +
safety system failure)

s C-6 Rev. 0
= 5 accident classes

s RD-337
= AOO, DBA, BDBA — Severe Accidents

Lecture 9 - Accident Analysis.ppt
11/17/2009 6:28 PM Rev. 8 vgs
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i RD-337

Anticipated Operational Occurrence (AOS)a deviation from
normal operation that is expected to occur oncgeweral times during
the operating lifetime of the NPP but which, in vieiwhe appropriate
design provisions, does not cause any significantaje to items
Important to safety, nor lead to accident condgipn

Design Basis Accident (DBAJ-accident conditions for which an NPP
IS designed according to established design aitand for which
damage to the fuel and the release of radioactatemal are kept
within regulated limits;and

Beyond Design Basis Accident (BDBA)aecident conditions less
frequent and more severe than a design basis atcAI8DBA may
or may not involve core degradation.

Lecture 9 - Accident Analysis.ppt
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RD-337 Dose Acceptance
i Criteria

Dose Acceptance Criteria
AOOs DBAs
0.5 mSv 20.0 mSv

Lecture 9 - Accident Analysis.ppt
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Summary of Acceptance
Criteria

Event C-6 Siting Guide RD-310/RD-337

Frequency (Darlington) (BA/BB/PN/PL/G2)
(occ/yr)

Event Dose Categories Dose  Class Dose
Classes Limits Limits es Limits
(mSv) (mSv) (mSv)
> 107 Class 1 0.5 Single Failure 5 AOO 0.5
10% to 107 Class 2 5 Single Failure 5 DBA 20
10° to 10™ Class 3 30 Single Failure 5
10“ to 107 Class 4 100 Dual Failure 250
10™ to 107 Class 5 250 Dual Failure = 250  BDBA

Lecture 9 - Accident Analysis.ppt
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:_h Event Combinations - ECC

= ECC Impairments
= Failure of injection
= Failure of crash cooldown
= Failure of loop isolation

= Moderator required as a heat sink

s Low steam flow to channel
= Metal water reaction
=« Hydrogen production & transport

= Cooling of broken loop

Lecture 9 - Accident Analysis.ppt
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Fuel in LOCA + LOECC

Pre-Test Configuration (ra®ebt-Test Configuration (radial)

37-

ELEMENT

BUNDLE
Post-Test
Configuwation (axidl)

_-_-i-

F

1: - S — -
. Jﬂw e —

e e
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i Sensitivity to Steam Flow

3 STAGES:
1) Initial heatup2) Exothermic steam-Zircaloy reaction 3) Cool down to
steady-state —
S e o

2000

15004

Temperature (deg. C)

10004

5004

500 1000 1500 2000

Time (s)
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Pressure Tube Ballooning

*Experiments

) i)

/;f '\\
Busbar Busbar
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Quenching (Nucleate Boiling)
& After PT/CT Contact

Lecture 9 - Accident Analysis.ppt
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Film Boiling

Lecture 9 - Accident Analysis.ppt
11/17/2009 6:28 PM Rev. 8 vgs

44



i Effect of CT surface

Lecture 9 - Accident Analysis.ppt
11/17/2009 6:28 PM Rev. 8 vgs

45



Subcooled Boiling Map
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hockey.sgr

Pressure-Tube Contact Temperature (°C)
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i Safety Requirements — LOECC

= Dose limits from siting guide and C6,
frequency limits from RD-337

= No limit on fuel damage

s Prevent channel failure

= No fuel melting, adequate moderator
subcooling

= No hydrogen detonation or fast flame

Lecture 9 - Accident Analysis.ppt
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Event Combinations -
i Containment

= Containment impairments

= loss of air coolers, loss of dousing, open
ventilation dampers, deflated airlock door
seals, (open airlock doors)

=« partial or total loss of vacuum, failure of
the instrumented containment pressure
relief valves to open or close, failure of one
bank of self-actuating containment
pressure relief valves

Lecture 9 - Accident Analysis.ppt
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i In-Core Break: Bubble Growth

Hot-pressurized water is
discharged into the cool
moderator water

Coolant flashing occurs
Steam bubble formation
Bubble expands/contracts

Pressurization of surrounding
water

Loading in-core structures

Short term transient on order of
milliseconds

Lecture 9 - Accident Analysis.ppt
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i Small-Scale Burst Test Facility

Al

Burst Tests - .

— Designed to assess
consequences of an
iIn-core FC rupture

— ~1/10 scale

— Tests in water with
various channel
configurations

— Data supports code
development and
understanding of

large-scale tests

Lecture 9 - Ac A
11/17/2009 6:28 PM Rev. 8 vgs 50



‘L Bubble Dynamics

Sl B rst Tests -
— ~1/10 scale

— Saturated water
~10 MPa

— Tests done with
and without
neighbouring
channels

Lecture 9 - Accident Analysis.ppt
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5 X 5 Array

Lecture 9 - Accident Analysis.ppt
11/17/2009 6:28 PM Rev. 8 vgs
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i In-Core Break: Safety Issues

= Damage to reactivity
mechanisms

= Propagation of the s *
break to other channels

= Calandria overpressure
= Detection signals

= Displacement of
moderator poison

= Fission product washout

Lecture 9 - Accident Analysis.ppt
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Full Scale Channel Tests

Full scale Zr-2.5Nb PT in Zr-2 CT burst channel and
target channels

9 channel array (3x3), burst channel location variable
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Calandria Tubes Absorb
Energy

—
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i End-Fitting Ejection

= Fuel bundle ejection
into oxidizing
atmosphere

= Cooling by water
sprays?

SSSSSS
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i Flow Blockage

= Molten fuel
moderator
Interaction

= How much melt is
present when the
channel fails?

s Does the interaction
depend on the
amount of molten
fuel?
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i Molten Fuel — Channel Interaction

Molten Material  Failure

Small quantities of molten material from an overheated
bundle have been shown to be sufficient to rupture a fuel
channel at high system pressure in existing CANDUs
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Flow Blockage Channel Rupture Tests
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* Flow Blockage Test




Molten Fuel Moderator
ilnteraction

* During a single channel severe flow blockage event, it is postulated that
molten material may be generated in the channel, which would subsequently
be ejected into the moderator

* A test program has confirmed the dominant mechanism of interaction
between molten fuel (ejected at operating pressure) and the moderator

LS
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Results

= Completed ejection tests — e.qg. for 23kg. test:
= Melt temperature ~2400°C
= Melt ejection pressure ~3 MPa

= Steam injection lines (@10 MPa) opened ~30 ms after PT
rupture

= No “"steam explosion” noted
« Fine fragmentation of melt (<1 mm diameter)
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i Poisoned Moderator

= Used during startup after a long shutdown
= Displacement of poisoned moderator by coolant
= Mixing modes

Piston model Perfect Mixing
o e ol e

/

@ D @ )]
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Reactivity Balance

Parameter Conservative Rationale
Direction

Initial reactor operating state Startup after a long Maximize reactivity
shutdown due to decay of
neutron absorbers in
the fuel

Fuel burnup Plutonium peak Maximize fuel
reactivity requiring
compensation;
maximize void
reactivity

Moderator poison load High Maximize reactivity
due to displaced
moderator

Coolant isotopic purity High Maximize reactivity
due to moderator
replacement

Failed channel location Near most effective Maximize loss of
shutoff rods shutoff rod reactivity

Lecture 9 - Accident Analysis.ppt
11/17/2009 6:28 PM Rev. 8 vgs




:_h ACR

= How would the use of light-water
coolant in ACR affect the safety
concerns?
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i In-Class Assignment

Go back again to the ZED-2 reactor and
consider a loss of reactivity control caused by
an unexpected moderator pump up. Identify
as many of the key systems and parameters
as you can for this accident; and for each, list
the ‘conservative’ assumptions that you
would use to ensure your answer
(reasonably) overestimates the
conseguences.
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