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Chapter 4 - Probability Tools and Techniques

Introduction

Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from McCormick1 for the
basic probability theory. Alan Monier guided the bulk of the remainder. Paul Santamaura contributed to
improving the chapter.

The objective of this chapter is to provide the basic probability tools and techniques needed to explore
reactor safety analysis. This will allow the quantification of the concepts and designs developed in the
rest of the course.

Chapter Layout

First, the general rules of probability (AND and OR rules) and Bayes Equation are introduced but, for
the most part in this course, we will rely on the approximations of rare and independent events. Time
dependent systems are addressed, covering failure rates, repair, continuous operation, and demand
systems. 

We encounter a simple shutdown system, illustrating the concept of testing to increase system
availability. We also consider the basic ‘2 out of 3’ system so prevalent in reactor safety systems. By
way of contrast to the shutdown system, which is a demand type system, the emergency core cooling
system is also examined as an example of a demand system with a mission time.
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Definitions and Rules

First, you may want to refresh your memory with the basic rules of Boolean algebra in Appendix 3.

If event A occurs x times out of n repeated experiments then:

In other words, an event must either occur or not occur - there is no third possibility..

The intersection of 2 events, A1 and A2, is denoted:

A1A2 means that both events occur, so P(A1A2) is the probability that both events occur.

The conditional probability P (A1 | A2) means the probability of A1 given that A2 has occurred.

The product rule for probabilities states:

For example, if A1 is the probability that part 1 fails and A2 is the probability that part 2 fails then
P(A1 A2) = probability that both part 1 fails and part 2 fails

  = probability that part 2 fails and (probability that part 1 fails given that part 2 fails)

The attached Figure 4-1 shows this graphically; yellow represent all events; green those events with
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Figure 4-2 - Probability of Either of two Events

(6)

outcome A1; blue with outcome A2; red, with outcome both A1 and A2.

See Appendix 1 for an example.

If the failures are independent, 

P(A2 | A1) = P(A2).

This can be extended to give:

If events are independent:

The union of two events is denoted:

This means the cases where either event occurs, including the cases where both events occur.

We have:

Figure 4-1 - Probability of Both of two Events
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as shown in Figure 4-2. The reason for subtracting P(A1A2) is because what you want is the total area
encompassed by the combination of the blue and green ovals in the diagram. If you just add P(A1) and
P(A2), you count the intersection where both events occur (in red) twice. So you have to subtract one
of them away.

In general:

If events are independent:

See Appendix 2 for an example.

Rare events approximation means P(An)<<1, and assuming they are independent:

and we previously had (equation 7):

The Bayes Equation

Given an event or hypothesis, B, and An mutually exclusive events or hypotheses (n=1, 2....N):
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Now, since the events, An are mutually exclusive:

Multiplying by P(B):

Substituting (17) into (15):

So if we know P(B|An) then we can calculate P(An |B). This is an important result because it enables
you to “reverse” the order of information. This is especially useful for analysing rare events.

Example - Pipe Inspection 

Suppose you are radiographing a Class I pipe for a defect. You know from past experience that the
likelihood of a defect is one per 100,000 radiographs. You also know that the likelihood of the
instrument indicating a defect when there is no defect (false positive) is 1%, and the likelihood of
indicating a defect when there is a defect is 99%. Your test indicates a defect. What is the probability
that the pipe actually has a defect?

Solution:

Apply Bayes theorem to two events:
A: pipe has a defect, so P(A) = 0.00001



a This is a bit of a simplification using the fact that P(A) is small.. Actually
P(B) = P(B|A) P(A) + P(B|notA) P(notA)

        =   0.99 x .00001   +   0.01 x   0.99999
        =  0.0100098

or approx = 0.01 as stated
In English, the first term is the 99% chance of detecting the defect in the one pipe in 100,000 that has the
defect; plus the second term, which is the 1% chance of indicating a false positive in the remaining 99,999
pipes out of 100,000.
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B: instrument says that pipe has a defect, so P(B)=0.01a

B|A: instrument says pipe has a defect when it has a defect, so P(B|A) = 0.99

What we want is P(A|B), the probability that the pipe actually has a defect when the instrument says it
has one.

Using Bayes theorem:

P(A|B) = [P(B|A)][P(A)]/P(B)

= 0.99 x 0.00001 / 0.01

= 0.00099

Comment:

This seems counterintuitive and suggests the test is not very good in detecting defects, despite the
instrument’s good accuracy rate. However the fact that the defect is so rare (we need about a hundred
thousand samples before we have chance at seeing a real positive) magnifies the small false positive rate
so that most positive tests are false positives.

This is quite important in medical tests - even a very accurate test for a rare cancer will often give far
more false positives than real ones.
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Figure 4-3 - Components of Core Monitoring System

Example - Core Monitoring System

A Core Monitoring System (CMS) is
composed of the 3 sensors as shown. All
sensors are required to work for the core
monitoring system to work.

We know from the manufacturer the failure
probabilities over the period of time under
consideration (this is the axiomatic data):

P(IC) = 0.02 
P(TS) = 0.04
P(PS) = 0.01

Testing of the installed system shows that P(CMS|IC) = 0.10 (i.e., when IC fails, the CMS fails 10% of
the time.

Also P(CMS|TS) = 0.15
 P(CMS|PS) = 0.10

What is the chance that when CMS fails, TS has also failed?

Solution:

Comment:

Based on the axiomatic data P(IC), P(TS) & P(PS) one would expect the TS to be a problem in
proportion to its failure rate relative to the other devices i.e.,

So, in the above example, the testing data, P(B)|An) is used to modify the axiomatic data to yield a
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revised relative frequency of sensor failure, given a system failure, by P(An|B). This is called a
posteriori probability.
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Figure 4-4 - Bayesian calculations for the example [Source: MCC81,
page 19]

Failure rate estimation when no failures have occurred

We can use Bayes Equation to
glean information from non-
events as well.

Consider the case where 4000
fuel shipments have been made
with no radioactive release. Can
we determine the probability of
release per shipment?

Let B = 4000 shipments with no
release

What we do now is take six
cases, in each of which we
hypothesize the value of the
release probability. We then use Bayes theorem to test how good our hypotheses are (i.e. calculate the
probability that each hypotheses is correct). We label our hypotheses A1 to A6.

A1 = release prob. = 10-3

A2 = release prob. = 10-4

.

.

.
A6 = release prob. = 10-8

If A1 were true, then:
P(B|A1) = (1-10-3)4000 = 0.0183 
since we can assume shipments are independent, the probability of a single success is 1-10-3, 
and P(B|A1) is just the intersection of 4000 events.

Likewise we find (as shown in Figure 4-4):
P(B|A2) = 0.6703
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P(B|A3) = 0.9608

If we know P(A1),...P(A6) we could calculate P(An|B) or the probability of our statement An being
actually true. If we assume P(An) = 1/N = 1/6, we find that P(A1|B) = 0.04, ie, it is not too likely. If we
use a more likely P(An) we see that P(An|B) is adjusted downwards and we conclude that the failure
rate is significantly less than 10-3. The practical application of this is in assigning a frequency - e.g., large
pipe break - in a Probabilistic Safety analysis, when none have actually occurred and all we have is the
number of reactor-years of experience.

Note that one of the criticisms of Bayes theorem when used this way is that the answer depends on the
appropriateness of the initial hypotheses. If there is little data and you put in strange hypotheses, you get
back strange answers.

Probability Distributions

Let p(x)dx be the probability that an event occurs in an interval x to x+dx - the probability density
function. Let P(X) be the cumulative probability that the event occurs somewhere between xmin and X.
Then

If p(x) is a constant, po, then P(X) = po(X-xmin) as expected.

There are two types of systems:
1) Those that operate on demand (i.e., safety systems)
2) Those that operate continuously (i.e., process systems)

Demand Systems

We define:

Dn = nth demand
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P(Dn) = probability of success on demand n

Wn = case where system works for each demand up to and including demand n.

What is the probability that it works for n-1 demands and fails on demand n?

So

If all demands are alike and independent, this reduces to:

Data for demand failure is often published using the symbol Qd.

Example:

 for a switch is 10-4. What is the probability that the switch fails at the end of 3 years when the

switch is used 20 times per week?

Solution:
Number of demands = 20x52x3 = 3120.

This is the same as the probability of any single specified failure, say on demand 25 or 87, out of 3120
demands (i.e., it doesn’t matter when the failure occurs).
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If the switch were repaired immediately upon any failure, then the probability that it would fail once at
anytime within the 3 years is just 3120 times the probability that it would fail at any specified demand,
i.e., 3120 x 0.732 x 10-4 = 0.228.
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Failure Dynamics

Failures are not static events. Let's look at failure dynamics.

Assuming that the device eventually fails, the reliability, R(t) is defined as

So,

If 8(t) dt = probability of failure at time t given successful operation up to time t (defined as the
conditional failure rate), then:
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Figure 4-5 - A summary of equations relating 8(t), R(t), F(t), and f(t)

Since R(0) = 1,

If 8 is constant, (i.e., random failures):

Given 8(t), we can determine everything else. See Figure 4-5 for a summary of commonly used terms
and relationships. See Figure 4-6 for typical 8 vs t.

Mean time to failure (MTTF)
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Figure 4-6 - Time dependence of conditional failure (hazard) rate [Source: Ref. 1, page 26]

Availability, A(t)

If a device undergoes repair then R(t) 6 A(t)

A(t) = R(t) for devices that are not repaired.

Continuous operation with Repair

Assume random failures. This implies
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8 = constant
R(t) = e-8t = reliability, illustrated in Figure 4-7.

Failure probability = F(t) /1 - R(t)/1 - e-8t

 illustrated in Figure 4-8.

Let repair occur at time interval, J. Then F(t) is a sawtooth as illustrated in Figure 4-9.

If J << 8 then 

This is a useful rule of thumb but you can always calculate accurately from:

A common design task is to design a system (composed of components that have a known failure rate)

to meet some target unavailability . Given a design, the repair interval is the remaining

variable. A frequent repair cycle (low J) gives a low  , but such frequent repair may be untenable

due to excessive cost on downtime or even hazard to repair personnel. In such a situation, alternative
designs would have to be considered.

Often, repair may not be required in order to return F to 0. It may be sufficient to simply test the
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components to ensure that they are available. This is usually the case for “demand” systems.
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Figure 4-7 - Reliability vs. Time
Figure 4-8 - Failure Probability vs. Time

Figure 4-9 - Failure probability with repair
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Figure 4-10 - Core with
Six SORs (from top)

Example - Shutdown System

Consider the case of a single shutoff rod (SOR) for a reactor. Given a failure rate based on previous
experience of 8 = 0.002/year and a required unavailability of #10-3, what is the required test period, J?

To meet the  target of 10-3,

This is certainly a reasonable test period. But if the  target were 10-6 or if the failure rate were 2 /

year, then the required test period would be 10-3 years or about 3 times per day! This would not be
reasonable.

A more realistic shutdown system would have a bank of, say, 6 SORs, as illustrated in Figure 4-10.
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Event # rods
drop

# rods fail
to drop

E0 6 0

E1 5 1

E2 4 2

E3 3 3

E4 2 4

E5 1 5

E6 0 6

Table 4-1 -  SDS event possibilities

(43)

(44)

(46)

When the shutdown system (SDS) is activated some, all or none of the rods drop into the core. The
possible events are enumerated in Table 4-1.

Assuming that the rods fail independently and that the failure
rate is 8, then the probability of a given rod failing on
average is:

as before. And the success probability is 1-p. In general the
probability for event Ek, k = 1, 2... N is

The factor gives the number of possible ways for

that event to happen, the factor  is the probability

that N-k rods all successfully drop and the factor pk is the
probability that k all fail to drop.

Thus:

P(Eo) = (1-p)6

P(E1) = 6(1-p)5p
P(E2) = 15 (1-p)4p2

P(E3) = 20 (1-p)3p3

P(E4) = 151-p)2p4

P(E5) = 6(1-p)p5

P(E6) = p6

Since these are the only possibilities, they sum to unity, i.e:

Normally, there are more SORs than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop. If this were the design criteria, then events Eo, E1 and E2 represent the
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successful deployment of the SDS. Events E3 6 E6 represent system failures.

The system unavailability for a 4 out of 6 criterion is thus:

Given a 8 and an assumed J, the  is calculated and compared to the required unavailability.

The J is then adjusted until the  target (say 10-3) is met. For a 8 of, say 0.02/year, we find that

is 2 x10-5 for a J of 1 year. Thus testing every year is more than enough for this design to meet the

unavailability target.

The above assumes that, when testing occurs, any deficiencies are immediately and instantaneously
repaired so that the “clock” is effectively reset and the failure probability is reset to zero. However,
repairs cannot usually be made right away. The plant will have to operate with less than 6 SORs
available and the unavailability target must still be met.

For instance, assume that the operator finds that one rod fails the test and has to be declared “out of
service”. The above calculation needs to be repeated based on a 4 out of 5 criterion rather than a 4 out
of 6.

Thus:

A J of 1 year gives  = 0.00098, which just meets the  target of 10-3.

We continue in this way by also considering the case where 2 rods fail their test and are taken out of
service. Now the SDS must operate on a 4 out of 4 basis. All remaining rods must drop. In this case
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Case J
 (per year)

Operator Action

0 rods fail test 2 x 10-5 1 None

1 rod fail test 0.00098 1 Repair rod

2 rods fail test .0008 .02 Repair rods 
Test every week until rods are repaired

3 or more rods
fail test

1 Shutdown since need at least 4 rods available

Table 4-2 - SDS summary

These modes are automatic failures since at
least 4 rods are required. The reactor is not
operated in these modes.

the unavailability is

= 1 - (1-p)4A2

For J = 1 year, we find  = 0.039 and the operator must step up the testing programme

dramatically (J = 0.02 years or once every week) to achieve  = 10-3 or better.

To summarize:

Fault Tree Example

A more systematic way to carry out the same analysis as per the previous section is to develop a fault
tree. We start by identifying the end result (SDS1 fails to deploy) and itemize all the ways that this can
happen. In this case, SDS1 can fail in any one of its 7 modes:

Event E0 0 rods out of service
Event E1 1 rods out of service
Event E2 2 rods out of service
Event E3 3 rods out of service
Event E4 4 rods out of service
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Figure 4-11 - 
OR Gate
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A B

C

A N DA N D

A B
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Figure 4-12 - 
AND Gate

Event E5 5 rods out of service
Event E6 6 rods out of service

All these modes are mutually exclusive so we OR their probabilities of failures. The fault tree is shown
in Figure 4-13.

We digress briefly to explain the symbols used in the fault tree. One starts at the top with the event of
interest, usually the system failure. Then one determines each and every immediate cause of such an
outcome. If either of several immediate causes is sufficient to cause the “top” event, then they are joined
by an “OR” gate, which looks like Figure 4-11. It means: Event A OR event B must occur in order for
event C to occur.

Conversely, if all of several immediate causes must occur in order to cause the “top” event, then they
are joined by an “AND” gate, which looks like Figure 4-12. It means: Event A AND event B must
occur in order for event C to occur. It can also
be represented by the same symbol containing a
@ sign

In Figure 4-13 below, the “OR” gate is
represented by a symbol as in Figure 4-11. It
can also be represented by the same symbol
containing a + sign, or just by a line junction
(uncommon).

We expand each option until we can no longer
decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probability of being in that mode is (1-p)6 as before.
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SDS1 fails
in E6 mode

SDS1 fails
in E0 mode

SDS1 fails
in E5 mode

SDS1 fails
in E4 mode

SDS1 fails
in E3 mode

SDS1 fails
in E2 mode

SDS1 fails
in E1 mode

5 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

6 rods
fail to
drop

5 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

2 rods
fail to
drop

4 rods
fail to
drop

3 rods
fail to
drop

2 rods
fail to
drop

1 rods
fail to
drop

failure probability = 1 once in these modes
(so not included in fault tree)

SDS1 fails
to deploy

OR

OR OR OR

Figure 4-13 - Six ShutOff Rod System Fault Tree
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(49)

(50)

(51)

(52)

(53)

(54)

Within that mode, failure occurs if either:
6 rods fail to drop [probability of this failure mode = p6]
5 rods fail to drop [probability of this failure mode = 6 (1-p) p5]
4 rods fail to drop [probability of this failure mode = 15 (1-p)2 p4]
3 rods fail to drop.[probability of this failure mode = 20 (1-p)3 p3]

These events are mutually exclusive. Thus that portion of the tree is expanded as shown. The
unavailability of SDS1 while in the E0 mode is simply:

The contribution to unavailability of the system for this segment of the fault tree is:

The other modes can be expanded in like fashion to give:

Finally, the total system unavailability is:

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these
are modes where the unavailability is known. In those cases, the plant would be shut down and put in a
fail safe mode by other means. Thus, these modes do not contribute to operating unavailability. 

Also note that, in contrast to the example developed in the previous section, the above is based on a
common J. In the previous example J was varied within each mode to meet the target unavailability so
that:
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Condition of relays
DEF
(1 = OK, 
0 = FAILED)

Condition of
sub-system

Probability

000 0 p3

001 0 p2 (1-p)

010 0 p2 (1-p)

011 1 p (1-p)2

100 0 p2 (1-p)

101 1 p (1-p)2

110 1 p (1-p)2

111 1 (1-p)3

Table 4-3 - Possible sub-system states and probabilities

(55)

(56)

D

D

E

E

F

F

Figure 4-14 - '2 out of 3' Logic - Relay
example

2 / 3 Logic Example

Figure 4-14 illustrates a relay setup that operates on a
2 out of 3 logic, or 2/3 logic. There are 3 physical
relays, D, E and F but each relay has two sets of
terminal pairs, allowing them to be connected as
shown. The relays are normally open but close when a
signal (D, E or F) from their respective channels are
received. If any two channels are activated, then the
circuit is completed and current can flow between top
and bottom. If the sub-circuit is in a safety system
circuit, the safety system is activated when two or
more of channels D, E and F are TRUE. If the
probability of failure of any relay is p, what is the
overall unavailability of the sub-circuit?

This situation is, in fact, completely similar to
the SOR case previously examined. Here
success is defined as 2 out of 3 events
occurring. The unit fails if 3 relays fail or if 2
relays fail. All other states constitute a working
sub-system. This is summarized in Table 4-3.
All the states are mutually exclusive. The
unavailability, then of the unit is simply the sum
of the failure probabilities:

In general, for a M out of N system:
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(57)

D

E

F

D

F

E

D

E

F

F

D

E

(a) (a)(b)

Figure 4-15 - '2 out of 3' Ladder Logic

Ladder Logic

Consider now the system shown in Figure 4-15 (a) where the relays D, E and F have two sets of
terminals just like the previous example. In the standby or ready state, the relays are energized closed,
providing a current path from top to bottom. When the system “fires”, i.e., when signals are received at
the relays, the current path is broken if at least 2 relays change state (go from closed to open). Failure
of a component (a relay in this case) occurs when it fails to change state as requested. The failure
modes are the same as for the previous example and are given in Table 4-3. We conclude that the
system depicted by Figure 4-15 is entirely equivalent to that of Figure 4-14.

Since safety systems are generally wired so that a
power failure will invoke the safety system, the ready
state has the relays powered closed and the relays
open when power is lost. The relays are designed to
fail open, thereby tending to fire the safety system if
the safety system logic or components fail. The
McMaster Nuclear Reactor safety trip signals, for
instance, are all wired in series and any one signal
breaks the current to the magnetic clutches holding
up the shutoff rods.

In actual systems, the relays of the ladder shown in
Figure 4-15 do not have dual terminals. Rather,
separate relays are used, depicted as D1, D2, etc. in Figure 4-16.

Failure of the system due to relay failures now occurs when all 3 ladder steps fail, ie, when step 1 fails
AND step 2 fails AND step 3 fails. The system will succeed if any step succeeds in breaking the circuit
(assuming signals at all 3 channels D, E and F).

Step 1 fails if either D1 or F2 fails to switch state upon demand (from closed to open). The fault tree is
shown in Figure 4-17. The system unavailability is thus:

if all relays fail with probability p. Since p<<1, the unavailability of this circuit with 6 relays is
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+

.

Failure to de-energize
ladder first step

Failure to de-energize
ladder second step

Failure to de-energize
ladder third step

Failure to de-energize
ladder network

TOP EVENT

Relay
D1 fails to 

open

Relay
F2 fails to 

open

+ +

Relay
E1 fails to 

open

Relay
F1 fails to 

open

Relay
D2 fails to 

open

Relay
E2 fails to 

open

Figure 4-17 - Fault Tree for the Ladder Logic Relays 

(a) (a)(b)

D1

E1

F2

D2

F1 E2

D1

E1

F1

F2

D2

E2

Ladder
first step

Ladder
second step

Ladder
third step

Figure 4-16 -  '2 out of 3' Ladder Logic - Separate
Relays

significantly lower than the previous example which uses 3 relays.
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Figure 4-18 -  Time dependent unavailability

Unavailability Targets

The unavailability of a system at any given time is, in general, a function of the system configuration.
Valves, switches, etc., fail from time to time. System configuration is a function of time. Hence,
unavailability is a function of time, as illustrated in Figure 4-18. Safety targets can be defined in terms of
some average unavailability or in terms of an instantaneous unavailability. In the later case, the operating
station would need to continuously monitor the plant status in order to continuously calculate the station
“risk” level. This is likened to having a “risk meter” for the station. Station personnel would respond to
equipment failures that lead to a rise in station risk by fixing equipment, maintaining equipment or
invoking standby or alternate systems. Working to an average unavailability, on the other hand, does
not require such vigilance; instantaneous risk can be permitted to rise in the short term as long as the
averages are achieved. This is more workable but less precise in maintaining control of station risk.

Having said that, many stations are
using what is effectively an
(analytical) ‘core melt’ meter. Core
melt being the only event that can
lead to significant public health
effects, it is important to know
whether changes in station
configuration - such as equipment
unavailability - lead to a significant
increase in the likelihood of core melt
during that period. This is particularly
true during maintenance outages -
what degradation in heat sink
redundancy is acceptable, for
example?



bSuch a distinction is made in Canada but most other places just use ECC

cThe mission time is calculated as the time beyond which the decay heat can be removed from
the fuel to the moderator without any water in the fuel channel, so as to prevent any further fuel
failures due to overheating.
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Dormant vs active systems

So far we have focussed on systems that are normally dormant and are required to operate on demand.
Safety systems generally fall into this category. However, some systems, like the Emergency Core
Cooling System (ECCS), are required to activate on demand and to continue to function for some
defined mission time. The normal response of the ECC to a Heat Transport System (HTS) break (Loss
of Coolant Accident or LOCA) is for the ECC to detect the event and initiate the injection of high
pressure (HP) cooling water (strictly speaking the water injection function of ECC is called ECI, or
Emergency Coolant Injection, since it has other functions such as steam generator cooldown and loop
isolationb). Then, after the HTS has depressurized, medium pressure and finally low pressure water is
injected. The HP water is supplied, for example, from a water tank (accumulator) pressurized by huge
gas cylinders. Medium pressure cooling water can be  supplied from a water tank via ECC pumps; and
low pressure water is retrieved from the sumps, cooled and pumped back into the HTS. For CANDU
reactors a mission time of 1 to 3 months has been setc. The ECCS is consequently divided into two
separate fault trees for the purposes of analysis: Dormant ECC and Long Term ECC (designated
DECC and LTECC respectively). The DECC fault tree focusses on failure to detect the LOCA event,
failure to initiate high pressure (HP) cooling water, failure to distribute the flow, and failure to provide
medium and low pressure water. The LTECC fault tree focusses on the failure to provide long term low
pressure cooling due to pump failure, valve failure, flow blockage, loss of electrical power and loss of
coolant supply.
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Exercises

1. For the example fault tree of shutoff rods, calculate  from the success modes. Which way is
better
a. in the 4/6 case
b. in the 26/28 case?

2. From Ref. 1: A horn on a car operates on demand 99.96% of the time. Consider each event
independent from all others. How many times would you expect to be able to honk the horn
with a 50% probability of not having a single failure?

3. From Ref. 1: A light bulb has a 8(t) = 5x10 -7 t, where t is the time in days. What is the MTTF
for the bulb?

4. What can you say quantitatively about the probability of a large LOCA in a CANDU?

5. In a fuel plant, two assembly lines, L1 and L2 produce 40% and 60% respectively of the fuel
pellets.  From past experience, it is known that 0.1% of L1 and 2% of L2 of the fuel pellets are
defective. If a fuel pellet was chosen randomly and found defective, what is the probability that
it was produced by L1?

6. Describe the advantages and disadvantages of Bayesian techniques for risk evaluations.  What
applications could you use Bayesian techniques in an operating nuclear power plant?

7. Two x 100% electrical motor driven auxiliary feedwater pumps are located in the turbine
building and depend on recirculated cooling water and two independent power supplies.  
Identify common mode and cause failures.  The utility wants to extend the life of the plant and is
planning refurbishment.  What mitigation features or modifications would you do to reduce or
eliminate these failures?

8. Based on the slide below showing a simple emergency coolant injection system and the results
of the fault tree analysis below, identify any weaknesses of the design.  Draw a schematic of the
system to improve the system reliability.  Calculate the unavailability if the pump and valves
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have a failure rate of 0.01/y and 0.002/y respectively.  How would you meet an unavailability of
1E-3? List any assumptions. 

Actions for necessary for success:
1 Start pump
2 Close valve ‘E’
3 Open valves ‘A’ and ‘D’
4 Open either or both valves ‘B’, ‘C’
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9. Consider the simplified ECC system shown below.

Assuming the signal has a demand failure probability of 0.005, the pump has a demand
failure probability of 0.02 and each valve has a demand failure probability of 0.01, work out
the demand failure probability of the system.

Note: Actions for necessary for success:
1 Start pump
2 Close valve ‘E’
3 Open valves ‘A’ and ‘D’
4 Open either or both valves ‘B’, ‘C’ (i.e. valves are 2 x 100%)

10. Consider the simplified ECC system shown below. Calculate the demand failure
probability to deliver sufficient flow to the reactor:
(a) using Boolean logic, and then
(b) by drawing the fault tree and calculating it out
Note that there are two 100% trains - i.e. each pump can deliver 100% of the required
flow. Note also that the valves are normally closed and the pumps are normally stopped,
and require the signal to open them and start them respectively.

Define your system boundaries specifically and very carefully.
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V1V1

V2

V1V1

V1V1V1V1V1V3 Reactor

S

S

S

P2

S

P1

S

Water tank

Demand failure probabilities for each component:

Pump (P): 0.01
Valve (V): 0.01
Signal (S): 0.001
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Appendix 1 - Example of Common Cause Failure

Consider two shutoff rods, each of which as a probability of failure of 0.001 per demand.
What is the probability that they both fail when required?

If they are independent, then P(A1A2) = P(A1)P(A2) = (0.001)2 = 10-6 per demand.

Suppose there is a common cause failure 10% of the time. That is:

P(A1) = P(A2) = 0.0009 (random) + 0.0001 (CC)

so the probability of one rod failing given that the other has failed is 90% random and 10%
common cause (with probability 1):

P(A1|A2) = 0.9 * 0.001 + 0.1 * 1 = 0.1009
or

P(A1A2) = 0.1009 * 0.001 = 0.0001009 ~ 10-4

Thus a 10% common cause probability has increased the combined failure by a factor of 100!
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(58)

(59)

Appendix 2 - Example of Probabilities for “OR”ed Events

Recall for independent events:

Let’s take an example to see how this works. Take two dice. What is the probability that die 1
shows a six OR die 2 shows a six (i.e., that there is at least one six). Recall:

Since P(A1) = P(A2) =1/6, and P(A1A2) = 1/36, then clearly

P(A1+A2) = 1/6 + 1/6 - 1/36 = 11/36.

Confirm by counting:

Die 1 Die 2 Number of
Cases

showing ‘six’

1 123456 1

2 123456 1

3 123456 1

4 123456 1

5 123456 1

6 123456 6

Total
Combinations
Showing ‘six’

11
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(60)

[Aside: Note that if the question had been “What is the probability that there is only one six showing
(i.e., that die 1 shows a six OR die 2 shows a six but not both), then you have to subtract off the
intersection again, i.e., 

or
P(A1+A2) = 1/6 + 1/6 - 1/36 - 1/36 = 10/36.]

Here is another way of looking at it. The probability of getting one or more sixes is [1 - the probability
of getting no sixes], since the events are mutually exclusive and complete:

P(at least one six) = 1 - P(no sixes)

The probability of getting no sixes for each die is [1 - the probability of getting a six]. The probability of
getting no sixes for both dies is the product of the probability of getting no six for each die, since the
events are independent (see equation 7):

P(no six for die 1) = 1 - P(six for die 1)
P(no six for die 2) = 1 - P(six for die 2)

So:
P(no six for die 1 AND no six for die 2) = [1 - P(six for die 1)][1 - P(six for die 2)]

Hence

P(at least one six) = 1 - P(no sixes) = 1 - [1 - P(six for die 1)][1 - P(six for die 2)]

= 1 - [1- 1/6][1 - 1/6] = 1 - 25/36 = 11/36

as we had before.

There are two lessons from this example:

• if you’re having trouble understanding some of the arcane equations of probability theory, work
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through some examples. Mathematicians and purists may cringe - but real science goes from
example to theory, not the other way around.

• sometimes it is easier to work from the probability of the complementary event - P(not A) or

 - rather than the probability of the event - P(A), remembering thatP A( )
= 1 - P(A)P A( )

In this example it didn’t make much difference. However suppose you had a thousand dice and asked
the same questions - which approach (equation 10 or equation 11) would be easier to use?
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Appendix 3 - Boolean Logic

This is a quick refresher in the basics of Boolean logic.

Boolean Algebra is a set of laws formulated by the British mathematician George Boole. It deals with
statements (here represented by A, B, C, etc.) which can be either true or false - often denoted by the
numbers 1 and 0 respectively. So for example A=0 means the statement A is false.

E.g. Let A represent “the earth is flat”. Then A=0.

Operators
There are several operators which act on these statements:

AND is an operator that gives the answer 1 only if both of its inputs are 1; and 0 otherwise. It is
represented as:

A.B or AB or A1B or A.AND.B, or graphically as 

It can be thought of as the intersection of sets A and B.
Examples:
If A is true and B is true, then A1B is true.
If A=1 and B=0, then A.B=0

OR is an operator that gives the answer 1 only if either or both of its inputs are 1; and 0 otherwise. It
is represented as:

A+B or AcB or A.OR.B, or graphically as
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It can be thought of as the union of sets A and B.
Examples:
If A is true and B is false, then AcB is true.
If A=1 and B=0, then A+B=1.

NOT is an operator which inverts the input.
It is represented at NOT.

The output of .NOT.A is denoted as A’ or }.
It is represented graphically as:

It can be thought of as “the opposite of” or “the complement of”set A.
Examples:
If A is true then .NOT.A is false.

There are four lesser used operators (.NAND., .NOR., .XOR. and .XNOR. which you can look up.

Basic principles

A=0 or A=1
(i.e. something can only be either true or false, not both)

If A=0, A1A=0
(i.e. if A is false, and since A1A=A, then A1A is false. Sometimes this is written as 0.0=0)

If A=1, AcA=1
(i.e. if A is true, and since AcA=A, then AcA is true. Sometimes this is written as 1+1=1 - remember,
you aren’t doing addition!)
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If A=0, then AcA=0.
(This is obvious if you think of set theory as we did above. Sometimes it is written 0+0=0).

If A=1, then A1A=1
Again, obvious from set theory - also written 1.1=1.

If A=1 and B=0, then A1B = B1A = 0
(i.e. if A is true and B is false, then the intersection of A and B can never be true, and vice versa.
Sometimes this is written as 1.0 = 0.1 = 0.)

If A=1 and B=0, then AcB = BcA = 1.
(i.e. if either one of A or B is true, then the union of A and B (A.OR.B) is always true. This can be
written 1+0 = 0+1 = 1.)

Theorems

These sound abstract but are obvious once you draw Venn diagrams. So I’ve used set theory symbols. 
You can substitute the mathematical symbols + and . For c and 1 if that is more intuitive for you.

Commutative Law
 AcB = BcA 
 A1B = B1A 

Associative Law
(AcB)cC = Ac(BcC)
(A1B)1C = A1(B1C)

Distributive Law
A1(BcC) = (A1B) c (A1C)
Ac(B1C) = (AcB) 1 (AcC)

Identity Law
A1A = A
AcA = A
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Completeness
(A1B)c(A1B’) = A
(AcB)1(AcB’) = A

Redundancy
Ac(A1B) = A
A1(AcB) = A

Mathematical
1 + A = 1
1.A = A

0 + A = A
0.A = 0

A + } = 1
A.} = 0

A + }B = A + B
A.(} + B) = A.B

DeMorgan’s Theorem
(A+B)’ = A’.B’
(AB)’ = A’ + B’

These will be useful when you work out fault trees mathematically.
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