Chapter 4 - Probability Toolsand Techniques
Introduction

Chapter Content

This chapter presents basic probability tools and techniques, drawing heavily from McCormick® for the
basic probability theory. Alan Monier guided the bulk of the remainder. Paul Santamaura contributed to
improving the chapter.

The objective of this chapter isto provide the basic probability tools and techniques needed to explore
reector safety analyss. Thiswill dlow the quantification of the concepts and designs developed in the
rest of the course,

Chapter Layout

Fird, the genera rules of probability (AND and OR rules) and Bayes Equation are introduced but, for
the most part in this course, we will rely on the gpproximations of rare and independent events. Time
dependent systems are addressed, covering failure rates, repair, continuous operation, and demand
systems.

We encounter a smple shutdown system, illustrating the concept of testing to increase system
availability. We dso congider the basic ‘2 out of 3' system so prevaent in reactor safety systems. By
way of contrast to the shutdown system, which is a demand type system, the emergency core cooling
system is dso examined as an example of a demand system with amisson time.
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Definitions and Rules
Firgt, you may want to refresh your memory with the basic rules of Boolean algebrain Appendix 3.

If event A occurs x timesout of n repesated experiments then:

P(A)mprobabilty of event A
'5“%.--(:—:)
(Axiom #1) 0 < P(A) <1
(Axiom #2):  P(A)+P(A) = 1 where A means “not A"
In other words, an event must elther occur or not occur - thereis no third possibility..

Theintersection of 2 events, A; and A,, is denoted:

AN A, .o:rAlA, or A, AND A,
(This 15 got A, tmers A,)

A;A, meansthat both events occur, so P(A,A,) is the probability that both events occur.
The conditional probability P (A; | A,) means the probability of A; given that A, has occurred.

The product rule for probabilities states:

P(A, A,) = P(AJJA) P(A,)
(Axdonsts) 17 PCA:LAQ P(A)

For example, if A, isthe probability that part 1 failsand A, is the probability that part 2 fails then
P(A; A,) = probability that both part 1 fails and part 2 fails
= probability that part 2 failsand (probability that part 1 fails given that part 2 fals)

The attached Figure 4-1 shows this graphically; yellow represent dl events; green those events with
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outcome A1; blue with outcome A2; red, with outcome both A1 and A2.
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Figure 4-1 - Probability of Both of two Events Figure 4-2 - Probability of Either of two Events
See Appendix 1 for an example.
If the failures are independent,
P(A2 [ Ay) = P(A).
This can be extended to give:
P(AIA,.....A,') - P(AI)P(A,I.A,)....P(A,IIAIA,....A,I_ N (6)
If events are independent:
P(AIA,....A‘) - P(AI)P(A,}....P(A,') 7)
The union of two events is denoted:
AJUA, or Aj+A, or A ORA, (8)

This means the cases where either event occurs, including the cases where both events occur.

We have:
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P(A,+A,) = P(A)) + P(A)) - P(AJA) 9)

as shown in Figure 4-2. The reason for subtracting P(A,A,) is because what you want is the total area
encompassed by the combination of the blue and green ovas in the diagram. If you just add P(A,) and
P(A,), you count the intersection where both events occur (in red) twice. So you have to subtract one
of them away.

In generd:

N Nl N
P(A +A, +. +AL) = Z; P(Ay) - 2; EI P(AAL)
o b= 1 men+ (20)

. +H{-DFIP(AA, AY
If events are independent:
1 - POAHA, . +AYD) -ﬁl [1-P(Ap] (11)
See Appendix 2 for an example.

Rare events approximation means P(A,)<<1, and assuming they are independent:

N
PA+A+ . A - kEchAN) (12)
and we previoudy had (equetion 7):
P(AA,..Ap = P(ADP(A,)....P(AY (13)

The Bayes Equation

Given an event or hypothesis, B, and A,, mutualy exclusive events or hypotheses (n=1, 2....N):

P(AB) = P(A)) P(BJA) = P(B)P(A,[B) (14
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. P(AB) = P(AD PgB(BI'A;‘) } (15)

Now, since the events, A, are mutudly exclusve:

E} P(A,|B) = 1 (16)

Multiplying by P(B):
N
P(B) = Z; P(B) P(A,|B)

- i P(AB) (17)

=1

- ﬁ; P(A) P(BIA)

Subdtituting (17) into (15):
P(A,) PBIA)

> P pElA)

PAIE) = (18)

So if we know P(BJA,) then we can cdculate P(A,, B). Thisis an important result because it enadbles
you to “reverse’ the order of information. Thisis especidly useful for andysng rare events.

Example - Pipe Inspection

Suppose you are radiographing a Class | pipe for a defect. Y ou know from past experience that the
likelihood of adefect is one per 100,000 radiographs. Y ou aso know that the likelihood of the
indrument indicating a defect when there is no defect (fase positive) is 1%, and the likelihood of
indicating a defect when thereis a defect is 99%. Y our test indicates a defect. Wheat is the probability
that the pipe actually has a defect?

Solution:

Apply Bayes theorem to two events.
A: pipe has a defect, so P(A) = 0.00001
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B: instrument says that pipe has a defect, so P(B)=0.012
BJA: instrument says pipe has a defect when it has a defect, so P(BJA) = 0.99

What we want is P(A|B), the probability that the pipe actually has a defect when the instrument says it
has one.

Using Bayes theorem:
P(AIB) = [P(BIA)I[P(A)I/P(B)
=0.99 x 0.00001/0.01

= 0.00099

Comment:

This seems counterintuitive and suggests the test is not very good in detecting defects, despite the
instrument’ s good accuracy rate. However the fact that the defect is so rare (we need about a hundred
thousand samples before we have chance at seeing ared postive) magnifies the smal fdse postive rate
S0 that most positive tests are fal se positives.

Thisis quite important in medica tests - even a very accurate test for arare cancer will often give far
more false positives than real ones.

@ Thisis abit of asmplification using the fact that P(A) is small.. Actualy

P(B) = P(BIA) P(A) + P(BInotA) P(notA)

= 0.99x.00001 + 0.01x 0.99999

= 0.0100098

or approx = 0.01 as stated
In English, the first term is the 99% chance of detecting the defect in the one pipe in 100,000 that has the
defect; plus the second term, which is the 1% chance of indicating a false positive in the remaining 99,999
pipes out of 100,000.
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Example - Core Monitoring System

A Core Monitoring System (CMYS) is
composed of the 3 sensors as shown. Al
sensors are required to work for the core
monitoring system to work.

We know from the manufacturer the failure
probabilities over the period of time under
congderation (this is the axiomatic data):

P(IC) =0.02

P(TS) =0.04

P(PS) = 0.01 Figure 4-3 - Components of Core Monitoring System

Testing of the ingtalled system shows that P(CMSJIC) = 0.10 (i.e., when IC fails, the CM S fails 10% of
thetime,

Also  P(CMS[TS) = 0.15
P(CMSJPS) = 0.10

Whét is the chance that when CMSfails, TS has dso failed?

Solution:
. P(TS) P(CMSI|TS)
P(TSICMS) P(IC) P(CMS|IC) +P(TS) P(CMS|TS) + P(PS) P(CMS|PS)
. 0.04 x 0.15 (19)
0.02x 0.10 + 0.04 x 0.15 + 0.01 2 0.10
= 0.667
Comment:

Based on the axiomatic data P(IC), P(TS) & P(PS) one would expect the TS to be aproblemin

proportion to its failure rate relaive to the other devicesi.e,
0.04 4

0.0240.0440.01 7
So, in the above example, the testing data, P(B)|A,,) is used to modify the axiomatic datato yield a

(20)
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revised rdative frequency of sensor falure, given asystem failure, by P(A,[B). Thisiscdled a
posteriori probability.
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Failurerate estimation when no failures have occurred

We can use Bayes Equation to

glean informetion from norn- LRI eCs e — PRCE EXTURB[EE’ Wil IRCINIOT o T3] (14)°
o ELOW ¢ R Ebia0 aug Py (VELLIGK” [J0 (PR ITRE 0 RERGAE0 LERaITOR 1 a8 &k Byg

events as well.
WUHRI 00003 044 OSI8 0'33EL O0RBG  0DITO
. by i LI v (3] g (X1}
Consider the case where 4000 povhugou Buon,
fuel shipments have been made W B0 DI G308 0TIN 03RS 05l

with no radioactive rdease. Can L . 1 S L 1L 1R S L i U
. " o bom
we determine the probability of
. B IEE ez AR D'3aRd ' D'adaed
?
release per shipment* " 10 [0 10_; 1 M-y 10,

Let B = 4000 shipments with no ! : ! BRI ¢
release N

What we do now istake six
cases, in each of which we
hypothesizethevalue of the P98 1)

release probability. We then use Bayes theorem to test how good our hypotheses are (i.e. caculate the
probability that each hypotheses is correct). We labd our hypotheses A, to As.

Figure 4-4 - Bayesian calculations for the example [Source: MCC81,

A, = release prob. = 103
A, = release prob. = 10"

Ag = release prob. = 108

If A; weretrue, then:

P(BJA,) = (1-103%%% = 0.0183

since we can assume shipments are independent, the probability of a single successis 1-10°,
and P(BJA,) isjust the intersection of 4000 events.

Likewise we find (as shown in Figure 4-4):
P(BJA,) = 0.6703
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P(BJA,) = 0.9608

If we know P(A,),...P(A¢) we could calculate P(A,|B) or the probability of our statement A,, being
actudly true. If we assume P(A,) = N = 1/6, we find that P(A,|B) = 0.04, ie, it isnot too likdly. If we
use amore likey P(A,) we see that P(A,[B) is adjusted downwards and we conclude that the failure
raeis significantly lessthan 103. The practica gpplication of thisisin assigning afrequency - eg., large
pipe break - in a Probabiligtic Safety analys's, when none have actualy occurred and al we haveisthe
number of reactor-years of experience.

Note that one of the criticisms of Bayes theorem when used thisway is that the answer depends on the
appropriateness of the initid hypotheses. If there islittle data and you put in strange hypotheses, you get
back strange answers.

Probability Distributions

Let p(x)dx be the probability that an event occursin an interva x to x+dx - the probability density
function. Let P(X) be the cumulative probability that the event occurs somewhere between X, and X.

Then
X

PO) = [ plde
- sumniative probsbily 1)
= P@ <X . .
where p(z) = probabiity density function
If p(x) isacongant, p,, then P(X) = p,(X-%.in) as expected.

There are two types of systems:
1) Those that operate on demand (i.e., safety systems)
2) Those that operate continuoudy (i.e., process systems)

Demand Systems
We define:
D, = n" demand

-10-
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P(D,,) = probability of success on demand n

P(D,) = probabilty of faihwe on demand o

W,, = case where systern works for each demand up to and including demand n.
What isthe probahility that it works for n-1 demands and fails on demand n?

PW,.)) = PO, D, D, .. D)) (22)

P(Bn wn-l> - P(Bnlwn- I> Pm:n-l) (23)

So
P(D,D,D;...D,, Bn) - P(BEIW:;-D P(W,.p
= P (O,/D,D,..D..)) . P (D,,ID,D,..D,_)...P(D,ID) P(D)

If dl demands are dike and independent, tris reduceé to: _
P(D,D,..D,_,D,) = P(D) [1-P(D)P? (25)

Datafor demand failure is often published using the symbol Q.

(24)

Example:
P(f)) for aswitch is 10%. What is the probaility that the switch fails at the end of 3 years when the
switch is used 20 times per week?

Solutior
Number of demands = 20x52x3 = 3120.

& P(DyppglWaype) = 1074 (1-1074P109
= 0732 2 1074, (26)

Thisis the same as the probability of any single specified failure, say on demand 25 or 87, out of 3120
demands (i.e, it does't matter when the failure occurs).

-11-
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If the switch were repaired immediately upon any failure, then the probability thet it would fal once at
anytime within the 3 yearsis just 3120 times the probability that it would fail at any specified demand,
i.e, 3120 x 0.732 x 10* = 0.228.

-12-
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Failure Dynamics

Failures are not datic events. Let'slook at failure dynamics.
f(tydt = probability of failure in the mterval dt at time t
F(t) = assumulated fashwre probability
_}‘ ﬂtl>dt/
°

Asauming that the device eventudly fails, the rdiability, R(t) is defined as
R® =1 - FQ)
» t
- [£3de! - [H8/58e!
0 0

-[ o’

o,
- - SR( _ dFQ)
f® m 5
If A(t) dt = probability of failure a timet given successful operation up to timet (defined asthe
conditiond failure rate), then:

fithds = A() &t R(Y
or f() = l(tziét(t)

dt

. 8R __
Y A RO

R
S A dt

4R
2 [ S5 - A% = B RO - b RO)
RD)
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Since R(0) = 1,

R = em (34)

-}')\(t)e&
0

If A is congtant, (i.e., random failures):
R@) = e™&, (35)

Given A(t), we can determine everything else. See Figure 4-5 for asummary of commonly used terms
and relationships. See Figure 4-6 for typicd A vst.

qenzirh
Ems bzopapijira Yo RUIENARY — 0L ¥l
beopapirh o .
Crommiie pyms Ay | RICES | — Wy I — cxb [_ 1 vi1} ';1..1.]
. ;
. LI . ]
KeRplh OB R TORY | = WY exd [ -1 viy ]
BTG L ¥i) RV ALV VAVATE U ¥ VR E NN <47
Legitonzpib wejEnouzb Le|Eiror b

Mg qeecubroo ZApO) = Likar - B = o

Figure 4-5 - A summary of equations relating A(t), R(t), F(t), and f(t)

Mean timeto failure (MTTF)

}t fiya
MTTF = 2 -ft fi(thdt

foe
0

(36)
= ft)\. e~# 4 (acsuming A = random)
3

1

A

-14-
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Figure 4-6 - Time dependence of conditional failure (hazard) rate [Source: Ref. 1, page 26]

Availability, A(t)

If adevice undergoes repair then R(t) - A(t)

R < A®) < L

A(t) = R(t) for devicesthat are not repaired.
Continuous oper ation with Repair

Assume random failures. Thisimplies
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A = congtant
R(t) = &' = rdiability, illustrated in Figure 4-7.

Failure probability = F(t) =1 - R(t)=1 - e
illugtrated in Figure 4-8.

Let repair occur at timeinterva, t. Then F(t) is a sawtooth asillugtrated in Figure 4-9.

If T << A then

Fi=1 - (1 - At + % )

= At for t < T any mterval
and t is measured the e of last repatr.

(38)

L<F> - I.Tt . (39)

Thisisauseful rule of thumb but you can dways caculate accurately from:
T x e'ui
fFos (.o
<F> = 0 - 0 A'
T T
f‘h (40)
0
_AT + 24—

At
A common design task is to design a systemn (composed of components that have a known failure rate)

to meet some target unavailability A CZ = F) . Given adesign, the repair interva isthe remaining

variable. A frequent repair cycle (low t) givesalow A , but such frequent repair may be untenable
due to excessive cost on downtime or even hazard to repair personnel. In such a Stuation, dternative
designs would have to be considered.

Often, repair may not be required in order to return F to 0. It may be sufficient to smply test the

-16-
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components to ensure that they are available. Thisis usualy the case for “demand” systems.

-17-
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time time
Figure 4-8 - Failure Probability vs. Time
Figure 4-7 - Reliahility vs. Time

me

Figure 4-9 - Failure probability with repair

-18-

Chapter 4 - Probability Tools and Techniqueswpd Rev. 13 vgs/ps
Oct 12, 2009



Example - Shutdown System

Congder the case of a single shutoff rod (SOR) for a reactor. Given afailure rate based on previous
experience of A = 0.002/year and arequired unavailability of <107, what isthe required test period, ©?

- A
A~ Tt = 0.001 < (41)
Tomedtthe A target of 103,
1073
T — = | year
0.001/year y (42)

Thisis certainly areasonable test period. But if the A target were 10° or if the failure rae were 2/
year, then the required test period would be 10 years or about 3 times per day! This would not be
reasonable.

A more redigtic shutdown system would have a bank of, say, 6 SORs, asillugtrated in Figure 4-10.

Figure 4-10 - Core with
Six SORs (from top)

-19-

Chapter 4 - Probability Tools and Techniqueswpd Rev. 13 vgs/ps
Oct 12, 2009



When the shutdown system (SDS) is activated some, al or none of the rods drop into the core. The
possible events are enumerated in Table 4-1.

Assuming tht the rods fail independently and that the failure  10l€ 4-1- SDS event possibilities

rateis A, then the probability of agiven rod failing on
averageis: Event # rods # rods fail
AT X drop to drop
<F>e —— (= p f[or consiseness) (43)
2 EO 6 0
as before. And the success probability is 1-p. In genera the
probability for event E, k=1, 2...Nis El 5 1
E2 4 2
N!
P(E) = 1-pyFipk
(Ek) N-BIk (1-p)¥*p (44) | e3 3 3
The factor ﬁ gives the number of possible ways for E4 2 4
E5 1 5
that event to happen, the factor (1-py* isthe probability
E6 0 6
that N-k rods all successfully drop and the factor p* isthe
probability that k al fail to drop. |
Thus
P(E) = (1-p)°
P(E,) = 6(1-p)°p
P(E;) = 15 (1-p)'p?
P(E;) = 20 (1-p)°p’
P(E,) = 151-p)*p*
P(Es) = 6(1-p)p°
P(Es) = p°
Since these are the only possihilities, they sum to unity, i.e
N
YPE) -1 (46)
k=0

Normaly, there are more SORS than necessary for reactor shutdown and it is sufficient to require that,
say, 4 of the 6 rods must drop. If this were the design criteria, then events E,, E; and E, represent the

-20-
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successful deployment of the SDS. Events E; ~ E; represent system failures.

The system unavailability for a4 out of 6 criterion isthus:
- 6 2
A=YPE)=1-YPE)
k3 k-0
=1 - (1-p)* - 6(1-p)°p - 15(1-p)'p? (47)
where p = A'—;

Givenai and an assumed 1, the 4 iscalculated and compared to the required unavailability.
The t isthen adjusted until the A target (say 10°%) ismet. For a A of, say 0.02/year, we find that

A is2x10%forat of 1 year. Thustesting every year is more than enough for this design to meset the
unavailability terget.

The above assumes that, when testing occurs, any deficiencies are immediately and ingtantaneoudy
repaired so that the “ clock” is effectively reset and the failure probability is reset to zero. However,
repairs cannot usualy be made right away. The plant will have to operate with less than 6 SORs
available and the unavailability target must sill be met.

For instance, assume that the operator finds that one rod fails the test and has to be declared “out of
service”. The above caculation needs to be repeated based on a4 out of 5 criterion rather than a4 out
of 6.

Thus

5) 5)
1- 2 (1-p) - = (1-
sor P 7 gy AP

- 1- (-9 - 5(-p) p 9
= A, (to denote vnavailability with 1 rod out of service)

At of 1year gives A, =0.00098, which just meetsthe A target of 10°.

We continue in thisway by aso consdering the case where 2 rods fail their test and are taken out of
service. Now the SDS must operate on a4 out of 4 basis. All remaining rods must drop. In this case

-21-
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the unavallability is

A,=1-(1-p)

For t = 1 year, wefind K., = 0.039 and the operator must step up the testing programme

draméticaly (t = 0.02 years or once every week) to achieve A =103 or better.

To summarize:

Table 4-2 - SDS summary

Case A, T Operator Action

(per year)
0 rods fail test 2x10° |1 None
1 rod fail test 0.00098 |1 Repair rod
2 rods fail test .0008 .02 Repair rods

Test every week until rods are repaired

3ormorerods |1 Shutdown since need at least 4 rods available
fail test

Fault Tree Example

A more systematic way to carry out the same andysis as per the previous section isto develop afault
tree. We start by identifying the end result (SDSL1 fails to deploy) and itemize dl the ways that this can
happen. In this case, SDS1 can fall in any one of its 7 modes:

Event K 0 rods out of service

Event E, 1 rods out of service o |

Event 2 rods out of sarvice These modes are automatic failures since at

Event & 3 rods out of service least 4 rqu are required. The reactor is not
. operated in these modes.

Event E, 4 rods out of service

-22-
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Event E5 5 rods out of service
Event K 6 rods out of service

All these modes are mutudly exclusive so we OR their probabilities of failures. The fault treeis shown
in Figure 4-13.

We digress briefly to explain the symbols used in the fault tree. One starts &t the top with the event of
interest, usudly the system failure. Then one determines each and every immediate cause of such an
outcome. If either of severa immediate causesis sufficient to cause the “top” event, then they arejoined
by an “OR” gate, which looks like Figure 4-11. It means. Event A OR event B must occur in order for
event C to occur.

Conversdy, if all of severd immediate causes must occur in order to cause the “top” event, then they
arejoined by an “AND” gate, which looks like Figure 4-12. It means. Event A AND event B must
occur in order for event C to occur. It can also

be represented by the same symbol containing a C C
-90n
In Figure 4-13 below, the “OR” gateis OR AND

represented by a symbol asin Figure 4-11. It
can also be represented by the same symbol

containing a+ sign, or just by alinejunction A B A B
(uncommon). Figure 4-11 - Figure 4-12 -
OR Gate AND Gate

We expand each option until we can no longer
decompose the event or we arrive at a point where we know the probability of failure.

For the case of 0 rods out of service, the probaility of being in that modeis (1-p)® as before.

-23-
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SDS1 fails
to deploy

()

SDS1 fails SDS1 fails SDSI1 fails SDS1 fails SDS1 fails SDS1 fails SDSI1 fails
in EO mode in E1 mode in E2 mode| |in E3 mode in E4 mode in E5 mode in E6 mode

(so not included in fault tree)

@ilure probability = 1 once in these mod%
OR ] [ OR ] [ OR ]

1
6 rods 5 rods 4 rods 3 rods 4 rods 3 rods 2 rods 1rods
fail to fail to fail to fail to fail to fail to fail to fail to
drop drop drop drop drop drop drop drop

5rods 4 rods 3 rods 2 rods
fail to fail to fail to fail to
drop drop drop drop

Figure 4-13 - Six ShutOff Rod System Fault Tree
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Within that mode, failure occursiif either:

6 rods fail to drop [probability of this failure mode = p°]

5 rods fail to drop [probability of this failure mode = 6 (1-p) p°]

4 rodsfail to drop [probability of this failure mode = 15 (1-p)? pf]

3rodsfail to drop.[probability of this failure mode = 20 (1-p)* p?]
These events are mutudly exclusive. Thus that portion of the tree is expanded as shown. The
unavailability of SDS1 whilein the E, mode is Smply:

A, = Y faihre modes when 0 rods are out of servioe
= p‘ + 6(1 'p)ps + 15(1 _p)QPI- + 20(1 'p>3p3 (49)

whcrcp-k—;

The contribution to unaveilab_i lity of the system for this segment of tf_1e fault treeis
A (no rods out of servine) = (1-p)¢ A, (50)

The other modes can be expanded in like fashion to give:
A, = Y failore modes when 1 rod is out of servise

- ¥ + 5(1-pp* + 100-5¥p® + 1001-pYp? o
J_A, - E fashore modes when 2 rode are out of cervioe (52)
= pt +4(1-p)p® + 2(1-pYp? + 4(1-pYp
Finally, the total system unavailability is; _ _
A = (1-p)° A + 6(1-p)°p A, + 15(1-p)ip? A, (53)

Note that the system unavailability does not include the unavailability for modes 3 through 6 since these
are modes where the unavailability is known. In those cases, the plant would be shut down and put in a
fail safe mode by other means. Thus, these modes do not contribute to operating unavailability.

Also note that, in contrast to the example developed in the previous section, the above is based on a
common t. In the previous example T was varied within each mode to meet the target unavailability so
that:

A=Ay=A =A =A,, (54)
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2/ 3 Logic Example

Figure 4-14 illustrates arelay setup that operateson a
2 out of 3logic, or 2/3 logic. There are 3 physica

relays, D, E and F but each relay has two sets of
termind pairs, alowing them to be connected as

shown. The relays are normaly open but close when a
sgnd (D, E or F) from their repective channels are
received. If any two channdls are activated, then the
circuit is completed and current can flow between top
and bottom. If the sub-circuit isin a safety system
circuit, the safety system is activated when two or

more of channels D, E and F are TRUE. If the
probaility of falure of any rlay is p, what isthe
overd| unavallability of the sub-circuit?

Thisgtudion s, in fact, completdy smilar to
the SOR case previoudy examined. Here
success is defined as 2 out of 3 events
occurring. The unit fallsif 3 rdaysfal or if 2
relaysfail. All other ates condtitute aworking
sub-system. Thisis summarized in Table 4-3.
All the gates are mutudly exclusve. The
unavalahility, then of the unit is smply the sum
of the failure probabilities

- 3) 3)
A= 2 4 2 (1-
P 211!9(9)

31 0
=93 +3p2(1-p)
In generd, for aM out of N system:

K - E-E“ NI (1_ )ﬂ"l k
TE
NI

=M
k=M-1
-1 (N-BIki

(55)

(56)

(1-¥1p

- X
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D5~ ES- R
Es- F&-  Da-

Figure 4-14 - '2 out of 3' Logic - Relay
example

Table 4-3 - Possible sub-system states and probabilities

Condition of relays Condition of Probability

DEF sub-system

(1=0K,

0 = FAILED)
000 0 p
001 0 p* (1-p)
010 0 p? (1-p)
011 1 p (1-p)?
100 0 p* (1-p)
101 1 p (1-p)?
110 1 p (1-p)?
111 1 (1-p)?

P



Ladder Logic

Consder now the system shown in Figure 4-15 (&) where the rdlays D, E and F have two sets of
terminasjust like the previous example. In the stlandby or ready state, the relays are energized closed,
providing a current path from top to bottom. When the system “fires’, i.e., when signals are received at
the relays, the current path is broken if at least 2 relays change state (go from closed to open). Failure
of acomponent (arelay in this case) occurs when it fails to change sate as requested. Thefailure
modes are the same as for the previous example and are given in Table 4-3. We conclude that the
systemn depicted by Figure 4-15 is entirely equivaent to that of Figure 4-14.

Since safety systems are generaly wired so that a

power failure will invoke the safety system, the ready

date has the relays powered closed and the relays D 51
=

£

open when power islogt. The relays are designed to

fail open, thereby tending to fire the safety systemif E 1
the safety system logic or components fail. The

McMagter Nuclear Reactor safety trip Signds, for F &7 W E
ingance, are dl wired in series and any one sgnd tl—’j
breaks the current to the magnetic clutches holding

up the shutoff rods.

g
W)

@) (a)
In actua systems, the rdlays of the ladder shownin ~ Figure 4-15 - "2 out of 3" Ladder Logic
Figure 4-15 do not have dud terminals. Rather,
Separate relays are used, depicted as D1, D2, etc. in Figure 4-16.

Failure of the systlem due to relay failures now occurs when dl 3 ladder stepsfall, ie, when step 1 fails
AND gep 2 fails AND sep 3 fals. The system will succeed if any step succeeds in breaking the circuit
(assuming Sgndsat dl 3 channesD, E and F).

Step 1falsif ether D1 or F2 fals to switch state upon demand (from closed to open). Thefault treeis
shown in Figure 4-17. The system unavailability isthus
A = (D1+F2).(E1+D2).(F1+E2)

57
= (2p)® = 8p3 &)

if dl rlaysfail with probability p. Since p<<1, the unavailability of this circuit with 6 rdaysis
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sgnificantly lower than the previous example which uses 3 rdays.

Ladder
SR D1 -5 B2 first step
— — Ladder
D2 El & D2 second step
Ladder
F1 & A E2 F1 E2 third step
(a) (B)

Figure 4-16 - '2 out of 3' Ladder Logic - Separate
Relays

D1

A
E1 361

Failure to de-energize
ladder network

TOP EVENT

()

Failure to de-energize Failure to de-energize Failure to de-energize
ladder first step ladder second step ladder third step

o B a

Relay
D1 fails to
open

Relay
F2 fails to
open

Relay
F1 fails to
open

Relay
E2 fails to
open

Relay
E1 fails to
open

Relay
D2 fails to
open

Figure 4-17 - Fault Tree for the Ladder Logic Relays
-28-
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Unavailability Targets

The unavalability of asysem a any given timeis, in generd, afunction of the sysem configuration.
Vaves, switches, ec.,, fal from timeto time. System configuration is afunction of time. Hence,
unavailability isafunction of time, asilludtrated in Figure 4-18. Safety targets can be defined in terms of
some average unavailability or in terms of an instantaneous unavailability. In the later case, the operating
dtation would need to continuoudy monitor the plant status in order to continuoudy caculate the station
“rik” leve. Thisislikened to having a“risk meter” for the sation. Station personne would respond to
equipment fallures that lead to arisein Sation risk by fixing equipment, maintaining equipment or
invoking standby or dternate systems. Working to an average unavailability, on the other hand, does
not require such vigilance; instantaneous risk can be permitted to rise in the short term aslong as the
averages are achieved. Thisis more workable but less precise in maintaining control of station risk.

Having said that, many stations are
using what is effectively an
(anaytical) ‘core melt’ meter. Core
melt being the only event that can
lead to sgnificant public hedth
effects, it isimportant to know
whether changesin gation
configuration - such as equipment
unavailability - leed to asgnificant
increase in the likelihood of core melt
during that period. Thisis particularly
true during maintenance outages -
what degradation in heat Snk
redundancy is acceptable, for
example?

<A> in the time interval

>

time
d:\teach\ep7xx\a_aver.flo

Figure 4-18 - Time dependent unavailability
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Dormant vs active systems

So far we have focussed on systems that are normally dormant and are required to operate on demand.
Safety systems generdly fal into this category. However, some systems, like the Emergency Core
Cooling System (ECCS), are required to activate on demand and to continue to function for some
defined mission time. The norma response of the ECC to a Heat Transport System (HTS) break (Loss
of Coolant Accident or LOCA) isfor the ECC to detect the event and initiate the injection of high
pressure (HP) cooling weter (drictly speaking the water injection function of ECC is called ECI, or
Emergency Coolant Injection, Sinceit has other functions such as steam generator cooldown and loop
isolatiorP). Then, after the HT'S has depressurized, medium pressure and finally low pressure water is
injected. The HP water is supplied, for example, from awater tank (accumulator) pressurized by huge
gas cylinders. Medium pressure cooling water can be supplied from awater tank via ECC pumps, and
low pressure water is retrieved from the sumps, cooled and pumped back into the HTS. For CANDU
reactors amission time of 1 to 3 months has been s&t°. The ECCS is consequently divided into two
separate fault trees for the purposes of andysis Dormant ECC and Long Term ECC (designated
DECC and LTECC respectively). The DECC fault tree focusses on failure to detect the LOCA event,
fallure to initiate high pressure (HP) cooling weter, failure to distribute the flow, and failure to provide
medium and low pressure weter. The LTECC fault tree focusses on the failure to provide long term low
pressure cooling due to pump failure, valve failure, flow blockage, loss of ectrical power and loss of
coolant supply.

®Such a distinction is made in Canada but most other places just use ECC

“The mission time is calculated as the time beyond which the decay heat can be removed from
the fuel to the moderator without any water in the fuel channel, so as to prevent any further fuel
failures due to overheating.
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Exercises

1 For the example fault tree of shutoff rods, caculate Ko from the success modes. Which way is
better
a inthe 4/6 case
b. in the 26/28 case?

2. From Ref. 1: A horn on acar operates on demand 99.96% of the time. Consider each event
independent from al others. How many times would you expect to be able to honk the horn
with a50% probability of not having asingle fallure?

3. From Ref. 1: A light bulb hasa A (t) = 510" t, where t isthe time in days. What isthe MTTF
for the bulb?

4, What can you say quantitatively about the probability of alarge LOCA ina CANDU?

5. Inafud plant, two assembly lines, L1 and L2 produce 40% and 60% respectively of the fudl
pellets. From past experience, it is known that 0.1% of L1 and 2% of L2 of the fue pellets are
defective. If afud pelet was chosen randomly and found defective, whet is the probability that
it was produced by L17?

6. Describe the advantages and disadvantages of Bayesian techniques for risk evauations. What
gpplications could you use Bayesan techniques in an operating nuclear power plant?

7. Two x 100% dectrical motor driven auxiliary feedwater pumps are located in the turbine
building and depend on recirculated cooling water and two independent power supplies.
Identify common mode and cause failures. The utility wants to extend the life of the plant and is
planning refurbishment. What mitigation festures or modifications would you do to reduce or
diminate these fallures?

8. Basad on the dide below showing asmple emergency coolant injection system and the results
of the fault tree analysis below, identify any wesaknesses of the design. Draw a schematic of the
system to improve the system religbility. Caculate the unavalability if the pump and vaves

-31-

Chapter 4 - Probability Tools and Techniqueswpd Rev. 13 vgs/ps
Oct 12, 2009



have afallure rate of 0.01/y and 0.002/y respectively. How would you meet an unavailability of
1E-3?Ligt any assumptions.

(ECI INJECTION SIGNAL

)
7

B ﬁ _

A D
PUMP c
Failure to deliver
sufficient flow
through valve “D"
Actions for necessary for success: Qm
1 Satpump 1
2 Closevdve'F Valve D" s ggnal o e e b
3 Openvaves‘A’ and ‘D’ open vaive “D7
4  Open either or bothvaves‘B’, ‘C 8
ump Valve “B” Valve “C”
fails to fails to fails to
continue to open open
run given
start
G

Valve “E”
fails to

close
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9. Condder the smplified ECC system shown below.

CECI INJECTION SIGNAL

N

X
o Y€

PUMP C

Assuming the signal has a demand failure probability of 0.005, the pump has a demand
failure probability of 0.02 and each valve has a demand failure probability of 0.01, work out
the demand failure probability of the system.

Note: Actions for necessary for success:

1 Start pump

2 Closevadve'E

3 Openvdves'A’ and ‘D’

4 Open either or both valves‘B’, * C’ (i.e. valves are 2 x 100%0)

10. Condgder the smplified ECC system shown below. Calculate the demand failure
probability to ddiver sufficient flow to the reactor:
(& using Boolean logic, and then
(b) by drawing the fault tree and cdculating it out
Note that there are two 100% trains - i.e. each pump can deliver 100% of the required
flow. Note aso that the valves are normally closed and the pumps are normally stopped,
and require the Sgnd to open them and start them respectively.

Define your system boundaries specificadly and very carefully.
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)

Water tank

yd
1%

P1

-

s
S0

Reactor

Demand failure probabilities for each component:

Pump (P): 0.01
Valve (V): 0.01
Signal (S): 0.001
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Appendix 1 - Example of Common Cause Failure

Consder two shutoff rods, each of which as a probability of failure of 0.001 per demand.
What is the probability that they both fail when required?

If they are independent, then P(A1A2) = P(A1)P(A2) = (0.001)? = 10°° per demand.
Suppose there is a common cause failure 10% of thetime. That is:
P(A1) = P(A2) = 0.0009 (random) + 0.0001 (CC)

s0 the probability of onerod faling given that the other has failed is 90% random and 10%
common cause (with probability 1):

P(A1/A2) = 0.9 * 0.001 + 0.1 * 1 = 0.1009
or
P(A1A2) = 0.1009 * 0.001 = 0.0001009 ~ 10"

Thus a 10% common cause probability has increased the combined failure by afactor of 100!
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Appendix 2 - Example of Probabilities for “OR”ed Events

Recdl for independent events:

N
1 - PA+A, +. +A)) -E [1-PAp] (58)

Let’stake an example to see how thisworks. Take two dice. What is the probability that die 1
showsasx OR die 2 shows asix (i.e, that thereis at least one Sx). Recdl:

P(A,+A)) = P(A) +P(A)) - P(AJA) (59)
Since P(A,) = P(A,) =1/6, and P(A,A,) = 1/36, then clearly

P(A+A,) = 1/6 + 1/6 - 1/36 = 11/36.

Confirm by counting:
Diel Die2 Number of
Cases
showing ‘six’

1 123456 1
2 123456 1
3 123456 1
4 123456 1
5 123456 1
6 123456 6

Total 11

Combinations

Showing ‘six’
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[ASde Notethat if the question had been “What is the probability that there is only one sx showing
(i.e, that die 1 showsasix OR die 2 shows asix but not both), then you have to subtract off the
intersection again, i.e,

P(A,+A,) = P(A) + P(A) - 2 P(AJA) (60)

or
P(A,+A,) = 1/6 + 1/6 - 1/36 - 1/36 = 10/36]

Here is another way of looking at it. The probability of getting one or more sixesis[1 - the probability
of getting no Sixes|, Snce the events are mutualy exclusive and complete:

P(at least one Six) = 1 - P(no sixes)
The probability of getting no sixes for each dieis[1 - the probability of getting a sx]. The probability of
getting no sixes for both diesis the product of the probability of getting no six for each die, Sncethe
events are independent (see equation 7):

P(no six for die 1) = 1 - P(sx for die 1)
P(no six for die2) = 1 - P(six for die 2)

P(no six for die 1 AND no six for die2) =[1 - P(sx for die 1)][1 - P(six for die 2)]
Hence
P(at least onesix) = 1- P(no sixes) =1 - [1 - P(six for die 1)][1 - P(six for die 2)]
=1-[1- U6][1- 1/6] = 1- 25/36 = 11/36
as we had before.
There are two lessons from this example:
. if you' re having trouble understanding some of the arcane equations of probability theory, work
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through some examples. Mathematicians and purists may cringe - but red science goes from
example to theory, not the other way around.

. sometimes it is easier to work from the probability of the complementary event - P(not A) or
P(A) - rather than the probability of the event - P(A), remembering that
P(A)=1-P(A)

In this example it didn’t make much difference. However suppose you had a thousand dice and asked
the same questions - which gpproach (equation 10 or equation 11) would be easier to use?
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Appendix 3 - Boolean Logic

Thisisaquick refresher in the basics of Boolean logic.

Boolean Algebrais a et of laws formulated by the British mathematician George Boole. It dedls with
statements (here represented by A, B, C, etc.) which can be elther true or false - often denoted by the
numbers 1 and O respectively. So for example A=0 means the Satement A isfase.

E.g. Let A represent “the earth isflat”. Then A=0.

Operators
There are severa operators which act on these statements:

AND isan operator that givesthe answer 1 only if both of itsinputs are 1; and O otherwise. It is
represented as:

A.B or AB or AnB or A.AND.B, or graphicdly as

It can be thought of as the intersection of sets A and B.
Examples

If A istrue and B istrue, then AnB istrue.

If A=1 and B=0, then A.B=0

OR isan operaor that givesthe answer 1 only if either or both of itsinputs are 1; and O otherwise. It
isrepresented as.

A+B or AuB or A.OR.B, or graphicdlly as
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It can be thought of as the union of sets A and B.
Examples

If A istrueand B isfdse, then AuB istrue.

If A=1 and B=0, then A+B=1.

NQOT is an operator which inverts the input.
It isrepresented at NOT.

The output of .NOT.A isdenoted as A’ or A.
It isrepresented graphicdly as

It can be thought of as “the opposite of” or “the complement of"set A.
Examples
If A istruethen NOT.A isfdse

There are four lesser used operators (NAND., .NOR., .XOR. and .XNOR. which you can look up.
Basic principles

A=0or A=1
(i.e. something can only be ether true or false, not both)

If A=0, AnA=0
(i.e if Alisfase and snce AnA=A, then AnA isfdse. Sometimes thisis written as 0.0=0)

If A=1, AUA=1
(i.e if Aistrue, and Snce AUA=A, then AUA istrue. Sometimesthisiswritten as 1+1=1 - remember,
you aren't doing addition!)
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If A=0, then AUA=0.
(Thisisobviousif you think of set theory as we did above. Sometimesiit iswritten 0+0=0).

If A=1, then AnA=1
Again, obvious from set theory - also written 1.1=1.

If A=1and B=0, then AnB =BnA =0
(i.e.if Alistrue and B isfase, then the intersection of A and B can never be true, and vice versa
Sometimesthisiswrittenas 1.0 =0.1=0.)

If A=1 and B=0, then AuB = BUA = 1.
(i.e. if either one of A or B istrue, then the union of A and B (A.OR.B) isdwaystrue. Thiscan be
written 1+0=0+1=1))

Theorems

These sound abstract but are obvious once you draw Venn diagrams. So I’ ve used set theory symbols.
Y ou can subgtitute the mathematical symbols + and . For u and n if that is more intuitive for you.

Commutative Law
AuB =BUA
ANnB =BnA

Associative Law
(AuB)uC = Au(BuC)
(AnB)NC = An(BNC)

Distributive Law
An(BuC) = (AnB) u (AnC)
Au(BNC) = (AuB) n (AuC)

| dentity Law
AnA =A
AuA =A
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Completeness
(AnB)U(ANB’) = A
(AuB)N(AuB’) = A

Redundancy
Au(AnB) = A
An(AuB) = A

M athematical
1+A=1
1A=A

O+A=A
0A=0
A+A=1
AA =

o

A+AB=A+B
A(A+B)=AB

DeMorgan’s Theorem
(A+B) = A’ B’
(AB) =A’ +B’

These will be useful when you work out fault trees mathematicaly.
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